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Centrality is most commonly thought of as a measure in which we assign a ranking of the 
vertices from most important to least important. The importance of a vertex is relative to 
the underlying process being carried out on the network. This is why there is a diverse 
amount of centrality measures addressing many such processes. We propose a measure 
that assigns a ranking in which interference is a property of the underlying process being 
carried out on the network.  
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and where (−O)𝑥= O𝑥𝑒𝑖𝜋𝑥. We then can express every entry of 𝑨𝑥 as, 

   

Networks are perhaps one of the most ubiquitous structures in nature. They arise for 
example in cellular biology connecting genes and proteins, in neuroscience connecting 
neurological regions of the brain, in sociology connecting the interactions of people, and 
recently in quantum computing. The analysis of the underlying topology of these discrete 
structures has thus gained widespread attention. Likewise, there has been a significant 
focus on designing measures to asses certain topological features of a network by 
assigning quantitative values to the nodes. These quantitative values have a subtle 
interpretation insofar as there are implicit assumptions of the underlying process being 
carried out on the network.  

Borgatti has identified a typology of flow processes with specific trajectories that use 
trails, geodesics, paths, or walks. In this framework the flow has a specific type of 
transmission corresponding to some concrete application. Borgatti gives examples such 
as used goods, currency, infections, and gossip. Suppose we want to model a flow 
process in which the flow may interfere with itself. This interference may be the result of 
collisions in the network where oppositely oriented flows may annihilate. How then can 
we model such a flow? Our proposition is to model continuous walks on the network 
insofar as interference becomes an emergent property.  

Definition:  Centrality is a measure in which the nodes of a network are assigned a 
ranking with respect to an implicit assumption of the flow characteristics of the network. 
Below  we give several examples of common centrality measures. 
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lemma 1.1:  The power-law function 𝑓 𝑎 = 𝑎𝑥,  𝑥 ∈ 𝑹 of the adjacency matrix produces  
complex functions  as the  entries. 
  
Proof:  Let A be the adjacency matrix of a simple nonempty graph. A is a traceless 
symmetric matrix, Tr 𝑨 = 𝑨, 𝑨T = 0. Since it is symmetric it is always diagonalizable, we 
then have  𝑨 = 𝑷𝑫𝑷−𝟏 where 𝑷 are the eigenvectors collected as a matrix and 𝑫 is the 
diagonal matrix consisting of the eigenvalues of A. We then have Tr 𝑨 = Tr 𝑷𝑫𝑷−𝟏 =
Tr 𝑫(𝑷𝑷−𝟏) = Tr 𝑫 =  Oii = 0 . Since the graph is nonempty and the sum of the 
eigenvalues is zero we are therefore guaranteed to have at least one negative eigenvalue. 
The function of a matrix can be expressed as 𝑓 𝑨 = 𝑷𝑓 𝑫 𝑷−1, where the spectral 
decomposition is, 
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where /+\{0} is the multiset of all positive eigenvalues not including zero and /− is the 
multiset of all negative eigenvalues. Since we are guaranteed at least one negative 
eigenvalue  𝜑𝑗𝑘(O, 𝑥) is complex always ∎ 
 
Theorem 1.1: The Pairwise Walk Function (PWF), 𝜑𝑗𝑘, is an element of Hilbert Space. 
  
Proof:  
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On the right-hand side of the integral we have two indeterminates of the form  0

0
  when 

when O𝑛 → 1 and when  O𝑛O𝑚 → 1. Upon a change of variable the limit is, 
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The integral then converges over the interval and we have the desired result,  𝜑𝑗𝑘 ∈
(1 ∎ Below we plot the real and imaginary parts of several PWF’s. 
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C. D. 

Figure 1. A & B) Real and Imaginary parts of two PWFs for a complete graph on 3 vertices. C & B) Real and 
Imaginary parts of two PWFs for a cycle graph on 4 vertices.  

Figure 2. Numerical simulation of a Quantum Random Walk in 1D compared to the Real part of two PWFs for a 
path graph on 4 vertices. 

Using the previous theorem we may now define  a unique class of centrality measures 
that live in Hilbert Space. Moreover, we may generalize common centrality measures to 
account for the additional property of flow self-interference. Below we give Degree-
Interference and Closeness-Interference, where  ]  is the sum of the columns of the  PWF 
matrix. 
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We’ve shown that when we allow continuous processes to occur on discrete structures 
interference becomes an emergent property. In this manner we way view graphs as 
lower-dimensional discrete representations of hilbert space. To the authors knowledge 
this is the first explicit relationship between combinatorics and hilbert space. Using this to 
our advantage we’ve generalized several common centrality measures to account for 
flow self-interference. Furthermore, these measures may be used for the development of 
new and novel quantum algorithms. Likewise, we saw an interesting relationship between 
numerical simulations of quantum random walks in 1D with the PWF for the path graph. 
Keeping the Distance Minimizer theorem in mind, which states that for all vectors in 
hilbert space there exists a unique vector in a closed subspace of hilbert space, which 
minimizes their distance, we may utilize PWFs as approximations to quantum random 
walks. Finally, an intriguing prospect is whether or not we can construct linear hermitian 
operators corresponding to graph parameters just as we have linear hermitian operators 
that correspond to physical observables in quantum mechanics. 

 

Figure 3. An inverse relationship between Closeness and Closeness-Interference. Closeness-Interference 
ranks the peripheral vertices closer than the core vertices. We may attribute this to destructive interference 
among the core vertices. 

[1] C. M. Chandrashekar, R. Srikanth, and Subhashish Banerjee, Symmetries and 
Noise in Quantum Walk. Phys. Rev. A 76, 022316, 16 August 2007. 

[2] S. P. Borgatti and M. G. Everett, A graph-theoretic perspective on centrality, Social 
Networks, 28 (2006), pp. 466–484. 
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and where (−O)𝑥= O𝑥𝑒𝑖𝜋𝑥. We then can express every entry of 𝑨𝑥 as, 

   

Networks are perhaps one of the most ubiquitous structures in nature. They arise for 
example in cellular biology connecting genes and proteins, in neuroscience connecting 
neurological regions of the brain, in sociology connecting the interactions of people, and 
recently in quantum computing. The analysis of the underlying topology of these discrete 
structures has thus gained widespread attention. Likewise, there has been a significant 
focus on designing measures to asses certain topological features of a network by 
assigning quantitative values to the nodes. These quantitative values have a subtle 
interpretation insofar as there are implicit assumptions of the underlying process being 
carried out on the network.  

Borgatti has identified a typology of flow processes with specific trajectories that use 
trails, geodesics, paths, or walks. In this framework the flow has a specific type of 
transmission corresponding to some concrete application. Borgatti gives examples such 
as used goods, currency, infections, and gossip. Suppose we want to model a flow 
process in which the flow may interfere with itself. This interference may be the result of 
collisions in the network where oppositely oriented flows may annihilate. How then can 
we model such a flow? Our proposition is to model continuous walks on the network 
insofar as interference becomes an emergent property.  

Definition:  Centrality is a measure in which the nodes of a network are assigned a 
ranking with respect to an implicit assumption of the flow characteristics of the network. 
Below  we give several examples of common centrality measures. 
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lemma 1.1:  The power-law function 𝑓 𝑎 = 𝑎𝑥,  𝑥 ∈ 𝑹 of the adjacency matrix produces  
complex functions  as the  entries. 
  
Proof:  Let A be the adjacency matrix of a simple nonempty graph. A is a traceless 
symmetric matrix, Tr 𝑨 = 𝑨, 𝑨T = 0. Since it is symmetric it is always diagonalizable, we 
then have  𝑨 = 𝑷𝑫𝑷−𝟏 where 𝑷 are the eigenvectors collected as a matrix and 𝑫 is the 
diagonal matrix consisting of the eigenvalues of A. We then have Tr 𝑨 = Tr 𝑷𝑫𝑷−𝟏 =
Tr 𝑫(𝑷𝑷−𝟏) = Tr 𝑫 =  Oii = 0 . Since the graph is nonempty and the sum of the 
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where /+\{0} is the multiset of all positive eigenvalues not including zero and /− is the 
multiset of all negative eigenvalues. Since we are guaranteed at least one negative 
eigenvalue  𝜑𝑗𝑘(O, 𝑥) is complex always ∎ 
 
Theorem 1.1: The Pairwise Walk Function (PWF), 𝜑𝑗𝑘, is an element of Hilbert Space. 
  
Proof:  
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On the right-hand side of the integral we have two indeterminates of the form  0
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The integral then converges over the interval and we have the desired result,  𝜑𝑗𝑘 ∈
(1 ∎ Below we plot the real and imaginary parts of several PWF’s. 
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Figure 1. A & B) Real and Imaginary parts of two PWFs for a complete graph on 3 vertices. C & B) Real and 
Imaginary parts of two PWFs for a cycle graph on 4 vertices.  

Figure 2. Numerical simulation of a Quantum Random Walk in 1D compared to the Real part of two PWFs for a 
path graph on 4 vertices. 

Using the previous theorem we may now define  a unique class of centrality measures 
that live in Hilbert Space. Moreover, we may generalize common centrality measures to 
account for the additional property of flow self-interference. Below we give Degree-
Interference and Closeness-Interference, where  ]  is the sum of the columns of the  PWF 
matrix. 
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We’ve shown that when we allow continuous processes to occur on discrete structures 
interference becomes an emergent property. In this manner we way view graphs as 
lower-dimensional discrete representations of hilbert space. To the authors knowledge 
this is the first explicit relationship between combinatorics and hilbert space. Using this to 
our advantage we’ve generalized several common centrality measures to account for 
flow self-interference. Furthermore, these measures may be used for the development of 
new and novel quantum algorithms. Likewise, we saw an interesting relationship between 
numerical simulations of quantum random walks in 1D with the PWF for the path graph. 
Keeping the Distance Minimizer theorem in mind, which states that for all vectors in 
hilbert space there exists a unique vector in a closed subspace of hilbert space, which 
minimizes their distance, we may utilize PWFs as approximations to quantum random 
walks. Finally, an intriguing prospect is whether or not we can construct linear hermitian 
operators corresponding to graph parameters just as we have linear hermitian operators 
that correspond to physical observables in quantum mechanics. 

 

Figure 3. An inverse relationship between Closeness and Closeness-Interference. Closeness-Interference 
ranks the peripheral vertices closer than the core vertices. We may attribute this to destructive interference 
among the core vertices. 

[1] C. M. Chandrashekar, R. Srikanth, and Subhashish Banerjee, Symmetries and 
Noise in Quantum Walk. Phys. Rev. A 76, 022316, 16 August 2007. 

[2] S. P. Borgatti and M. G. Everett, A graph-theoretic perspective on centrality, Social 
Networks, 28 (2006), pp. 466–484. 
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Centrality is most commonly thought of as a measure in which we assign a ranking of the 
vertices from most important to least important. The importance of a vertex is relative to 
the underlying process being carried out on the network. This is why there is a diverse 
amount of centrality measures addressing many such processes. We propose a measure 
that assigns a ranking in which interference is a property of the underlying process being 
carried out on the network.  

     ABSTRACT 

INTRODUCTION 

THEORY 

THEORY RESULTS 

 

CONCLUSION 

ACKNOWLEDGEMENTS 

¹Utah State University, Physics Department, UT 84321, Email: JarodPBenowitz@Gmail.com 
 

Jarod Benowitz¹, David Peak¹, PhD 

Centrality Measures of Graphs utilizing Continuous Walks in Hilbert 
Space 

REFERENCES 

𝑨𝑥 = 𝑷𝑫𝑥𝑷−𝟏 =  O𝑖
𝑥𝑢𝑖𝑗𝑢𝑗𝑘

𝒊

=  O𝑖
𝑥𝑢𝑖𝑘

𝒊

 

and where (−O)𝑥= O𝑥𝑒𝑖𝜋𝑥. We then can express every entry of 𝑨𝑥 as, 

   

Networks are perhaps one of the most ubiquitous structures in nature. They arise for 
example in cellular biology connecting genes and proteins, in neuroscience connecting 
neurological regions of the brain, in sociology connecting the interactions of people, and 
recently in quantum computing. The analysis of the underlying topology of these discrete 
structures has thus gained widespread attention. Likewise, there has been a significant 
focus on designing measures to asses certain topological features of a network by 
assigning quantitative values to the nodes. These quantitative values have a subtle 
interpretation insofar as there are implicit assumptions of the underlying process being 
carried out on the network.  

Borgatti has identified a typology of flow processes with specific trajectories that use 
trails, geodesics, paths, or walks. In this framework the flow has a specific type of 
transmission corresponding to some concrete application. Borgatti gives examples such 
as used goods, currency, infections, and gossip. Suppose we want to model a flow 
process in which the flow may interfere with itself. This interference may be the result of 
collisions in the network where oppositely oriented flows may annihilate. How then can 
we model such a flow? Our proposition is to model continuous walks on the network 
insofar as interference becomes an emergent property.  

Definition:  Centrality is a measure in which the nodes of a network are assigned a 
ranking with respect to an implicit assumption of the flow characteristics of the network. 
Below  we give several examples of common centrality measures. 

 Type equation here. Degree  Centrality: 

Katz Centrality: 

Closeness Centrality: 

lemma 1.1:  The power-law function 𝑓 𝑎 = 𝑎𝑥,  𝑥 ∈ 𝑹 of the adjacency matrix produces  
complex functions  as the  entries. 
  
Proof:  Let A be the adjacency matrix of a simple nonempty graph. A is a traceless 
symmetric matrix, Tr 𝑨 = 𝑨, 𝑨T = 0. Since it is symmetric it is always diagonalizable, we 
then have  𝑨 = 𝑷𝑫𝑷−𝟏 where 𝑷 are the eigenvectors collected as a matrix and 𝑫 is the 
diagonal matrix consisting of the eigenvalues of A. We then have Tr 𝑨 = Tr 𝑷𝑫𝑷−𝟏 =
Tr 𝑫(𝑷𝑷−𝟏) = Tr 𝑫 =  Oii = 0 . Since the graph is nonempty and the sum of the 
eigenvalues is zero we are therefore guaranteed to have at least one negative eigenvalue. 
The function of a matrix can be expressed as 𝑓 𝑨 = 𝑷𝑓 𝑫 𝑷−1, where the spectral 
decomposition is, 
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where /+\{0} is the multiset of all positive eigenvalues not including zero and /− is the 
multiset of all negative eigenvalues. Since we are guaranteed at least one negative 
eigenvalue  𝜑𝑗𝑘(O, 𝑥) is complex always ∎ 
 
Theorem 1.1: The Pairwise Walk Function (PWF), 𝜑𝑗𝑘, is an element of Hilbert Space. 
  
Proof:  
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On the right-hand side of the integral we have two indeterminates of the form  0

0
  when 

when O𝑛 → 1 and when  O𝑛O𝑚 → 1. Upon a change of variable the limit is, 
  

lim
𝑥→1

𝑥L − 1
ln 𝑥

= lim
𝑥→1

𝑥2L − 1
2ln 𝑥

= L 

  
The integral then converges over the interval and we have the desired result,  𝜑𝑗𝑘 ∈
(1 ∎ Below we plot the real and imaginary parts of several PWF’s. 
 

A. B. 

C. D. 

Figure 1. A & B) Real and Imaginary parts of two PWFs for a complete graph on 3 vertices. C & B) Real and 
Imaginary parts of two PWFs for a cycle graph on 4 vertices.  

Figure 2. Numerical simulation of a Quantum Random Walk in 1D compared to the Real part of two PWFs for a 
path graph on 4 vertices. 

Using the previous theorem we may now define  a unique class of centrality measures 
that live in Hilbert Space. Moreover, we may generalize common centrality measures to 
account for the additional property of flow self-interference. Below we give Degree-
Interference and Closeness-Interference, where  ]  is the sum of the columns of the  PWF 
matrix. 
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We’ve shown that when we allow continuous processes to occur on discrete structures 
interference becomes an emergent property. In this manner we way view graphs as 
lower-dimensional discrete representations of hilbert space. To the authors knowledge 
this is the first explicit relationship between combinatorics and hilbert space. Using this to 
our advantage we’ve generalized several common centrality measures to account for 
flow self-interference. Furthermore, these measures may be used for the development of 
new and novel quantum algorithms. Likewise, we saw an interesting relationship between 
numerical simulations of quantum random walks in 1D with the PWF for the path graph. 
Keeping the Distance Minimizer theorem in mind, which states that for all vectors in 
hilbert space there exists a unique vector in a closed subspace of hilbert space, which 
minimizes their distance, we may utilize PWFs as approximations to quantum random 
walks. Finally, an intriguing prospect is whether or not we can construct linear hermitian 
operators corresponding to graph parameters just as we have linear hermitian operators 
that correspond to physical observables in quantum mechanics. 

 

Figure 3. An inverse relationship between Closeness and Closeness-Interference. Closeness-Interference 
ranks the peripheral vertices closer than the core vertices. We may attribute this to destructive interference 
among the core vertices. 
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[2] S. P. Borgatti and M. G. Everett, A graph-theoretic perspective on centrality, Social 
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people, and recently in quantum computing. The analysis of 
the underlying topology of these discrete structures has thus 
gained widespread attention. Likewise, there has been a 
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Networks are perhaps one of the most ubiquitous structures in 
nature. They can be found in  
•  cellular biology:  connecting genes and proteins,  
•  neuroscience: connecting regions of the brain 
•  sociology: connecting human interactions 
•  quantum computing.  
  
Because of networks’ ubiquity, the analysis of their underlying 
topology has gained widespread attention. Likewise, there has 
been a significant focus on designing measures to assess parts 
of a network by assigning quantitative values to the nodes . 
These values can be interpreted many ways because there are 
implicit assumptions of the processes being carried out on the 
network. 
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Investigating mesospheric gravity wave dynamics over McMurdo Station, Antarctica (77° S) 

Introduction 
The Antarctic Gravity Wave Instrument Network (ANGWIN) is an NSF sponsored 
international program designed to develop and utilize a network of gravity wave 
observatories using existing and new instrumentation operated at several established 
research stations around the continent. Utah State University’s Atmospheric Imaging Lab 
operates all-sky infrared imagers at several research stations. Here we present novel 
measurements of short-period and larger-scale mesospheric gravity waves imaged 
during 2012 from McMurdo Station (77.8°S, 166.7°E) on Ross Island. This IR camera has 
operated at Arrival Heights alongside the University of Colorado Fe Lidar during the past 
three winter seasons (March-September 2012-2014). Two initial primary goals are: 
• Quantify the properties of small- and medium-scale mesospheric gravity wave 

climatology over this region of Antarctica. 
• Combine results with similar measurements from other ANGWIN stations to 

investigate continental-wide gravity wave dynamics (see SA31B-4100).  

Jonathan R. Pugmire, Mike J. Taylor, Yucheng Zhao, P.-Dominique Pautet                                                                         
Center for Atmospheric and Space Sciences, Utah State University 

IR Imaging 

The data show evolution from NW propagation (107 events) 
in the fall which expands to NE and SW wave motions during 
mid-winter (110 events). The late winter was dominated by 
many waves (202 events) again exhibiting strong NE and SW 
motions but more isotropic than earlier. The strong 
asymmetries are suggestive of localized sources.     

References  
MERRA Atlas, GEOS-5, August 2012, NASA Goddard Space Flight Center, Retrieved December 11, 2014. 
Nielsen, K., Taylor, M. J., Hibbins, R. E., Jarvis, M. J., & Russell, J. M. (2012). On the nature of short‐period mesospheric gravity wave propagation over 

Halley, Antarctica. Journal of Geophysical Research: Atmospheres (1984–2012),117(D5).  
Taylor, M.J., W.R. Pendleton, Jr, S. Clark, H. Takahashi, D. Gobbi, and R.A. Goldberg (1997). Image measurements of short-period gravity waves at equatorial 

latitudes, J. Geophys. Res., 102, 26,283-26,299. 
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Three Continuous Days in June 

Optical site at Arrival Heights, 
McMurdo Station 

South Pole 

Halley 
Rothera 

McMurdo 

Distribution of Wave Headings:  
Winter season wave motions were 

prominent in several directions. 

Summary  
We have analyzed one year of data to date from McMurdo Station, Antarctica. The 
results are as follows: 

All-sky observations of the OH emission layer (~87 
km) were made using an infrared (0.9-1.7 µm) 
cooled InGaAs camera. The OH airglow emissions 
are much stronger in the infrared region (>1 µm), as 
shown in blue in the figure to the right, and we use 
new InGaAs cameras to obtain high-quality short-
exposure images of gravity waves under auroral and 
full moon observing conditions. 

¾ A large number (400+) of short-period gravity 
waves observed over McMurdo, Antarctica 
enabling the wintertime mesosphere wave 
climatology to be investigated for the first time. 

¾ McMurdo waves exhibits a large spread of phase 
speeds with a tendency for high phase speeds up 
to ~120 m/s. 

¾ New keogram analysis enables the investigation of 
larger period gravity waves and tidal perturbations 
in the mesosphere revealing 6, 8, 12, and 24 hr 
tides and harmonics. 
 

Two Awesome Weeks in August 

Example image processing from June 25, 
2012, 09:57 UT.  

Raw all-sky (180°) OH image data were recorded every 
10 s with a 3 s exposure enabling detailed 
measurements of individual gravity wave events.  
(a) Raw image oriented using the IR star field. 
(b) Stars removed 
(c) Flat fielded: Average nightly image subtracted. 
(d) Unwarped to 350 x 280 km geographic grid at 87 

km altitude. 
 

Gravity waves were analyzed using well-developed 
Fourier analysis techniques to determine direction of 
propagation (θ), horizontal wavelength (λ), observed 
horizontal phase speed (v) and wave period (T) [e.g. 
Taylor, et al, 1997]. 
 
During the 2012 observing period (March-September, 
nighttime hours) at McMurdo over 400 short-period 
(<1 hr) gravity wave events were observed.  

Both large- and small-scale gravity wave features can be studied  by creating keograms. A keogram is 
made by stacking vertical (and horizontal) slices through the center of each image together to form a 
time series revealing wave activity as a function of time. The large keograms along the bottom of the 
poster shows 73 continuous hours of wave data starting (day 175, 01:33 UT to day 178, 03:09 UT). 
These data illustrate the high quality of our gravity wave measurements from Antarctica. 
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The four unwarped images above 
show example 350 x 280 km airglow 
images taken on day 176 every 15 
minutes revealing both the high level 
of wave activity and quality of the 
images. Several wave features are 
highlighted as they propagate through 
the images. The blue and green lines 
can also be seen in keogram data 
below, wave event #1. 

In mid-winter there is continuous darkness at McMurdo. 
From June 23-26, 2012 (day 175-178) over 40 small-scale 
gravity wave events were analyzed during 73 continuous 
hours of observations. Their properties are shown in the 
figures below. 
Observed Wavelength Observed Phase Speed Observed Period 

Note the large spread 
and preferential 

direction of waves with 
higher phase speeds. 

The black line is a power 
spectrum of the 

keogram using a high-
pass (<60 min) filter and 
shows good agreement. 

A low-pass filter (>1 hr periods) of the large 
73 hour keogram revealing strong tidal 
features with characteristic periods as 
identified in the FFT analysis.   

280 km North to South 
 
 
350 km East to West 
 

Day 175 Day 176 Day 177 Day 178 

N-S Low-Pass Filtered 

FFT power spectrum analysis identifying 
mesospheric tidal signatures. Note the 
strong diurnal tide at 24 hours and several 
harmonics at 6, 8, and 12 hrs. 
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Large-Scale Tidal Analysis 

¾ The sources of the wave events observed from McMurdo are probably associated 
with strong localized weather systems associated with the polar vortex. 

¾ Small-scale wave event analysis results are comparable using FFT and keograms. 

Future Work 
¾ Ongoing measurements from the South Pole station in combination with other 

ANGWIN sites will be used to investigate pan-Antarctic anisotropy and wave 
parameters. 

¾ New analysis of McMurdo data from 2013 and 2014 data will further clarify the 
asymmetries in the wave propagation at this site for understanding the climatology of 
gravity waves observed at McMurdo. 

¾ Comparison with onsite Fe Boltzmann Lidar measurements and MF radar wind 
measurements. 

Small-Scale Gravity Waves 
A high-pass filter was applied to the keogram 
to measure small-scale gravity waves  with 
periods of 5-60 min (as highlighted in yellow 
boxes). Two selected wave events are shown 
together with their FFT power spectrum. These 
are compared with the event properties 
analyzed from the individual airglow images. 

Distributions of Observed Wave Parameters 
A total of 419 events were analyzed. Their average values were λ= 22 km, v = 42 m/s,  
T = 12 min. These mean values and their ranges are typical for short-period gravity 
waves observed at several sites around Antarctica as part of ANGWIN. 
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On August 2-18, 2012 (UT day 214-230) over 180 small-scale  
gravity wave events were observed. Their characteristics  
were similar to the full season results except their average  
phase speeds (50 m/s) were significantly higher. These wave events dominated the end of season results. 
The phase speed distribution is consistent with critical level wind-filtering [Nielson, et al, 2012] with 
much higher eastward phase speeds.   

Keograms 

(a) (b) 

(c) (d) 

Note the prevailing NE 
and SW wave motions, 
similar  to the winter 

summary plot. 

Fall (March-May) Winter (June-July) August-Sept 

λ = 21 𝑘𝑚 

Zonal Mean Wind: Eastward winds 
throughout the stratosphere (77°S) create 
a critical layer for eastward wave phase 
speeds less than ~30 m/s [MERRA]. Wave headings for 180 events on UT 

days 214-230.  

𝑣 = 39𝑚 𝑠  𝑇 = 15 𝑚𝑖𝑛 

Sketch illustrating direction of  
propagation from McMurdo 
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Investigating mesospheric gravity wave dynamics over McMurdo Station, Antarctica (77° S) 

Introduction 
The Antarctic Gravity Wave Instrument Network (ANGWIN) is an NSF sponsored 
international program designed to develop and utilize a network of gravity wave 
observatories using existing and new instrumentation operated at several established 
research stations around the continent. Utah State University’s Atmospheric Imaging Lab 
operates all-sky infrared imagers at several research stations. Here we present novel 
measurements of short-period and larger-scale mesospheric gravity waves imaged 
during 2012 from McMurdo Station (77.8°S, 166.7°E) on Ross Island. This IR camera has 
operated at Arrival Heights alongside the University of Colorado Fe Lidar during the past 
three winter seasons (March-September 2012-2014). Two initial primary goals are: 
• Quantify the properties of small- and medium-scale mesospheric gravity wave 

climatology over this region of Antarctica. 
• Combine results with similar measurements from other ANGWIN stations to 

investigate continental-wide gravity wave dynamics (see SA31B-4100).  

Jonathan R. Pugmire, Mike J. Taylor, Yucheng Zhao, P.-Dominique Pautet                                                                         
Center for Atmospheric and Space Sciences, Utah State University 

IR Imaging 

The data show evolution from NW propagation (107 events) 
in the fall which expands to NE and SW wave motions during 
mid-winter (110 events). The late winter was dominated by 
many waves (202 events) again exhibiting strong NE and SW 
motions but more isotropic than earlier. The strong 
asymmetries are suggestive of localized sources.     
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Three Continuous Days in June 

Optical site at Arrival Heights, 
McMurdo Station 

South Pole 

Halley 
Rothera 

McMurdo 

Distribution of Wave Headings:  
Winter season wave motions were 

prominent in several directions. 

Summary  
We have analyzed one year of data to date from McMurdo Station, Antarctica. The 
results are as follows: 

All-sky observations of the OH emission layer (~87 
km) were made using an infrared (0.9-1.7 µm) 
cooled InGaAs camera. The OH airglow emissions 
are much stronger in the infrared region (>1 µm), as 
shown in blue in the figure to the right, and we use 
new InGaAs cameras to obtain high-quality short-
exposure images of gravity waves under auroral and 
full moon observing conditions. 

¾ A large number (400+) of short-period gravity 
waves observed over McMurdo, Antarctica 
enabling the wintertime mesosphere wave 
climatology to be investigated for the first time. 

¾ McMurdo waves exhibits a large spread of phase 
speeds with a tendency for high phase speeds up 
to ~120 m/s. 

¾ New keogram analysis enables the investigation of 
larger period gravity waves and tidal perturbations 
in the mesosphere revealing 6, 8, 12, and 24 hr 
tides and harmonics. 
 

Two Awesome Weeks in August 

Example image processing from June 25, 
2012, 09:57 UT.  

Raw all-sky (180°) OH image data were recorded every 
10 s with a 3 s exposure enabling detailed 
measurements of individual gravity wave events.  
(a) Raw image oriented using the IR star field. 
(b) Stars removed 
(c) Flat fielded: Average nightly image subtracted. 
(d) Unwarped to 350 x 280 km geographic grid at 87 

km altitude. 
 

Gravity waves were analyzed using well-developed 
Fourier analysis techniques to determine direction of 
propagation (θ), horizontal wavelength (λ), observed 
horizontal phase speed (v) and wave period (T) [e.g. 
Taylor, et al, 1997]. 
 
During the 2012 observing period (March-September, 
nighttime hours) at McMurdo over 400 short-period 
(<1 hr) gravity wave events were observed.  

Both large- and small-scale gravity wave features can be studied  by creating keograms. A keogram is 
made by stacking vertical (and horizontal) slices through the center of each image together to form a 
time series revealing wave activity as a function of time. The large keograms along the bottom of the 
poster shows 73 continuous hours of wave data starting (day 175, 01:33 UT to day 178, 03:09 UT). 
These data illustrate the high quality of our gravity wave measurements from Antarctica. 
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The four unwarped images above 
show example 350 x 280 km airglow 
images taken on day 176 every 15 
minutes revealing both the high level 
of wave activity and quality of the 
images. Several wave features are 
highlighted as they propagate through 
the images. The blue and green lines 
can also be seen in keogram data 
below, wave event #1. 

In mid-winter there is continuous darkness at McMurdo. 
From June 23-26, 2012 (day 175-178) over 40 small-scale 
gravity wave events were analyzed during 73 continuous 
hours of observations. Their properties are shown in the 
figures below. 
Observed Wavelength Observed Phase Speed Observed Period 

Note the large spread 
and preferential 

direction of waves with 
higher phase speeds. 

The black line is a power 
spectrum of the 

keogram using a high-
pass (<60 min) filter and 
shows good agreement. 

A low-pass filter (>1 hr periods) of the large 
73 hour keogram revealing strong tidal 
features with characteristic periods as 
identified in the FFT analysis.   
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350 km East to West 
 

Day 175 Day 176 Day 177 Day 178 

N-S Low-Pass Filtered 

FFT power spectrum analysis identifying 
mesospheric tidal signatures. Note the 
strong diurnal tide at 24 hours and several 
harmonics at 6, 8, and 12 hrs. 
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Large-Scale Tidal Analysis 

¾ The sources of the wave events observed from McMurdo are probably associated 
with strong localized weather systems associated with the polar vortex. 

¾ Small-scale wave event analysis results are comparable using FFT and keograms. 

Future Work 
¾ Ongoing measurements from the South Pole station in combination with other 

ANGWIN sites will be used to investigate pan-Antarctic anisotropy and wave 
parameters. 

¾ New analysis of McMurdo data from 2013 and 2014 data will further clarify the 
asymmetries in the wave propagation at this site for understanding the climatology of 
gravity waves observed at McMurdo. 

¾ Comparison with onsite Fe Boltzmann Lidar measurements and MF radar wind 
measurements. 

Small-Scale Gravity Waves 
A high-pass filter was applied to the keogram 
to measure small-scale gravity waves  with 
periods of 5-60 min (as highlighted in yellow 
boxes). Two selected wave events are shown 
together with their FFT power spectrum. These 
are compared with the event properties 
analyzed from the individual airglow images. 

Distributions of Observed Wave Parameters 
A total of 419 events were analyzed. Their average values were λ= 22 km, v = 42 m/s,  
T = 12 min. These mean values and their ranges are typical for short-period gravity 
waves observed at several sites around Antarctica as part of ANGWIN. 
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On August 2-18, 2012 (UT day 214-230) over 180 small-scale  
gravity wave events were observed. Their characteristics  
were similar to the full season results except their average  
phase speeds (50 m/s) were significantly higher. These wave events dominated the end of season results. 
The phase speed distribution is consistent with critical level wind-filtering [Nielson, et al, 2012] with 
much higher eastward phase speeds.   

Keograms 

(a) (b) 

(c) (d) 

Note the prevailing NE 
and SW wave motions, 
similar  to the winter 

summary plot. 

Fall (March-May) Winter (June-July) August-Sept 

λ = 21 𝑘𝑚 

Zonal Mean Wind: Eastward winds 
throughout the stratosphere (77°S) create 
a critical layer for eastward wave phase 
speeds less than ~30 m/s [MERRA]. Wave headings for 180 events on UT 

days 214-230.  

𝑣 = 39𝑚 𝑠  𝑇 = 15 𝑚𝑖𝑛 

Sketch illustrating direction of  
propagation from McMurdo 

Investigating mesospheric gravity wave dynamics over McMurdo Station, Antarctica (77° S) 

Introduction 
The Antarctic Gravity Wave Instrument Network (ANGWIN) is an NSF sponsored 
international program designed to develop and utilize a network of gravity wave 
observatories using existing and new instrumentation operated at several established 
research stations around the continent. Utah State University’s Atmospheric Imaging Lab 
operates all-sky infrared imagers at several research stations. Here we present novel 
measurements of short-period and larger-scale mesospheric gravity waves imaged 
during 2012 from McMurdo Station (77.8°S, 166.7°E) on Ross Island. This IR camera has 
operated at Arrival Heights alongside the University of Colorado Fe Lidar during the past 
three winter seasons (March-September 2012-2014). Two initial primary goals are: 
• Quantify the properties of small- and medium-scale mesospheric gravity wave 

climatology over this region of Antarctica. 
• Combine results with similar measurements from other ANGWIN stations to 

investigate continental-wide gravity wave dynamics (see SA31B-4100).  
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IR Imaging 

The data show evolution from NW propagation (107 events) 
in the fall which expands to NE and SW wave motions during 
mid-winter (110 events). The late winter was dominated by 
many waves (202 events) again exhibiting strong NE and SW 
motions but more isotropic than earlier. The strong 
asymmetries are suggestive of localized sources.     
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Three Continuous Days in June 

Optical site at Arrival Heights, 
McMurdo Station 

South Pole 

Halley 
Rothera 

McMurdo 

Distribution of Wave Headings:  
Winter season wave motions were 

prominent in several directions. 

Summary  
We have analyzed one year of data to date from McMurdo Station, Antarctica. The 
results are as follows: 

All-sky observations of the OH emission layer (~87 
km) were made using an infrared (0.9-1.7 µm) 
cooled InGaAs camera. The OH airglow emissions 
are much stronger in the infrared region (>1 µm), as 
shown in blue in the figure to the right, and we use 
new InGaAs cameras to obtain high-quality short-
exposure images of gravity waves under auroral and 
full moon observing conditions. 

¾ A large number (400+) of short-period gravity 
waves observed over McMurdo, Antarctica 
enabling the wintertime mesosphere wave 
climatology to be investigated for the first time. 

¾ McMurdo waves exhibits a large spread of phase 
speeds with a tendency for high phase speeds up 
to ~120 m/s. 

¾ New keogram analysis enables the investigation of 
larger period gravity waves and tidal perturbations 
in the mesosphere revealing 6, 8, 12, and 24 hr 
tides and harmonics. 
 

Two Awesome Weeks in August 

Example image processing from June 25, 
2012, 09:57 UT.  

Raw all-sky (180°) OH image data were recorded every 
10 s with a 3 s exposure enabling detailed 
measurements of individual gravity wave events.  
(a) Raw image oriented using the IR star field. 
(b) Stars removed 
(c) Flat fielded: Average nightly image subtracted. 
(d) Unwarped to 350 x 280 km geographic grid at 87 

km altitude. 
 

Gravity waves were analyzed using well-developed 
Fourier analysis techniques to determine direction of 
propagation (θ), horizontal wavelength (λ), observed 
horizontal phase speed (v) and wave period (T) [e.g. 
Taylor, et al, 1997]. 
 
During the 2012 observing period (March-September, 
nighttime hours) at McMurdo over 400 short-period 
(<1 hr) gravity wave events were observed.  

Both large- and small-scale gravity wave features can be studied  by creating keograms. A keogram is 
made by stacking vertical (and horizontal) slices through the center of each image together to form a 
time series revealing wave activity as a function of time. The large keograms along the bottom of the 
poster shows 73 continuous hours of wave data starting (day 175, 01:33 UT to day 178, 03:09 UT). 
These data illustrate the high quality of our gravity wave measurements from Antarctica. 
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The four unwarped images above 
show example 350 x 280 km airglow 
images taken on day 176 every 15 
minutes revealing both the high level 
of wave activity and quality of the 
images. Several wave features are 
highlighted as they propagate through 
the images. The blue and green lines 
can also be seen in keogram data 
below, wave event #1. 

In mid-winter there is continuous darkness at McMurdo. 
From June 23-26, 2012 (day 175-178) over 40 small-scale 
gravity wave events were analyzed during 73 continuous 
hours of observations. Their properties are shown in the 
figures below. 
Observed Wavelength Observed Phase Speed Observed Period 

Note the large spread 
and preferential 

direction of waves with 
higher phase speeds. 

The black line is a power 
spectrum of the 

keogram using a high-
pass (<60 min) filter and 
shows good agreement. 

A low-pass filter (>1 hr periods) of the large 
73 hour keogram revealing strong tidal 
features with characteristic periods as 
identified in the FFT analysis.   

280 km North to South 
 
 
350 km East to West 
 

Day 175 Day 176 Day 177 Day 178 

N-S Low-Pass Filtered 

FFT power spectrum analysis identifying 
mesospheric tidal signatures. Note the 
strong diurnal tide at 24 hours and several 
harmonics at 6, 8, and 12 hrs. 
 

T = 5.1, 8.4, 11.2, 16.4 min 

T = 6.1, 7.3, 9.7, 16.4 min 

Large-Scale Tidal Analysis 

¾ The sources of the wave events observed from McMurdo are probably associated 
with strong localized weather systems associated with the polar vortex. 

¾ Small-scale wave event analysis results are comparable using FFT and keograms. 

Future Work 
¾ Ongoing measurements from the South Pole station in combination with other 

ANGWIN sites will be used to investigate pan-Antarctic anisotropy and wave 
parameters. 

¾ New analysis of McMurdo data from 2013 and 2014 data will further clarify the 
asymmetries in the wave propagation at this site for understanding the climatology of 
gravity waves observed at McMurdo. 

¾ Comparison with onsite Fe Boltzmann Lidar measurements and MF radar wind 
measurements. 

Small-Scale Gravity Waves 
A high-pass filter was applied to the keogram 
to measure small-scale gravity waves  with 
periods of 5-60 min (as highlighted in yellow 
boxes). Two selected wave events are shown 
together with their FFT power spectrum. These 
are compared with the event properties 
analyzed from the individual airglow images. 

Distributions of Observed Wave Parameters 
A total of 419 events were analyzed. Their average values were λ= 22 km, v = 42 m/s,  
T = 12 min. These mean values and their ranges are typical for short-period gravity 
waves observed at several sites around Antarctica as part of ANGWIN. 

On August 2-18, 2012 (UT day 214-230) over 180 small-scale  
gravity wave events were observed. Their characteristics  
were similar to the full season results except their average  
phase speeds (50 m/s) were significantly higher. These wave events dominated the end of season results. 
The phase speed distribution is consistent with critical level wind-filtering [Nielson, et al, 2012] with 
much higher eastward phase speeds.   

Keograms 

(a) (b) 

(c) (d) 

Note the prevailing NE 
and SW wave motions, 
similar  to the winter 

summary plot. 
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λ = 21 𝑘𝑚 

Zonal Mean Wind: Eastward winds 
throughout the stratosphere (77°S) create 
a critical layer for eastward wave phase 
speeds less than ~30 m/s [MERRA]. Wave headings for 180 events on UT 

days 214-230.  

𝑣 = 39𝑚 𝑠  𝑇 = 15 𝑚𝑖𝑛 

Sketch illustrating direction of  
propagation from McMurdo 

Investigating mesospheric gravity wave dynamics over McMurdo Station, Antarctica (77° S) 

Introduction 
The Antarctic Gravity Wave Instrument Network (ANGWIN) is an NSF sponsored 
international program designed to develop and utilize a network of gravity wave 
observatories using existing and new instrumentation operated at several established 
research stations around the continent. Utah State University’s Atmospheric Imaging Lab 
operates all-sky infrared imagers at several research stations. Here we present novel 
measurements of short-period and larger-scale mesospheric gravity waves imaged 
during 2012 from McMurdo Station (77.8°S, 166.7°E) on Ross Island. This IR camera has 
operated at Arrival Heights alongside the University of Colorado Fe Lidar during the past 
three winter seasons (March-September 2012-2014). Two initial primary goals are: 
• Quantify the properties of small- and medium-scale mesospheric gravity wave 

climatology over this region of Antarctica. 
• Combine results with similar measurements from other ANGWIN stations to 

investigate continental-wide gravity wave dynamics (see SA31B-4100).  
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IR Imaging 

The data show evolution from NW propagation (107 events) 
in the fall which expands to NE and SW wave motions during 
mid-winter (110 events). The late winter was dominated by 
many waves (202 events) again exhibiting strong NE and SW 
motions but more isotropic than earlier. The strong 
asymmetries are suggestive of localized sources.     
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Three Continuous Days in June 

Optical site at Arrival Heights, 
McMurdo Station 

South Pole 

Halley 
Rothera 

McMurdo 

Distribution of Wave Headings:  
Winter season wave motions were 

prominent in several directions. 

Summary  
We have analyzed one year of data to date from McMurdo Station, Antarctica. The 
results are as follows: 

All-sky observations of the OH emission layer (~87 
km) were made using an infrared (0.9-1.7 µm) 
cooled InGaAs camera. The OH airglow emissions 
are much stronger in the infrared region (>1 µm), as 
shown in blue in the figure to the right, and we use 
new InGaAs cameras to obtain high-quality short-
exposure images of gravity waves under auroral and 
full moon observing conditions. 

¾ A large number (400+) of short-period gravity 
waves observed over McMurdo, Antarctica 
enabling the wintertime mesosphere wave 
climatology to be investigated for the first time. 

¾ McMurdo waves exhibits a large spread of phase 
speeds with a tendency for high phase speeds up 
to ~120 m/s. 

¾ New keogram analysis enables the investigation of 
larger period gravity waves and tidal perturbations 
in the mesosphere revealing 6, 8, 12, and 24 hr 
tides and harmonics. 
 

Two Awesome Weeks in August 

Example image processing from June 25, 
2012, 09:57 UT.  

Raw all-sky (180°) OH image data were recorded every 
10 s with a 3 s exposure enabling detailed 
measurements of individual gravity wave events.  
(a) Raw image oriented using the IR star field. 
(b) Stars removed 
(c) Flat fielded: Average nightly image subtracted. 
(d) Unwarped to 350 x 280 km geographic grid at 87 

km altitude. 
 

Gravity waves were analyzed using well-developed 
Fourier analysis techniques to determine direction of 
propagation (θ), horizontal wavelength (λ), observed 
horizontal phase speed (v) and wave period (T) [e.g. 
Taylor, et al, 1997]. 
 
During the 2012 observing period (March-September, 
nighttime hours) at McMurdo over 400 short-period 
(<1 hr) gravity wave events were observed.  

Both large- and small-scale gravity wave features can be studied  by creating keograms. A keogram is 
made by stacking vertical (and horizontal) slices through the center of each image together to form a 
time series revealing wave activity as a function of time. The large keograms along the bottom of the 
poster shows 73 continuous hours of wave data starting (day 175, 01:33 UT to day 178, 03:09 UT). 
These data illustrate the high quality of our gravity wave measurements from Antarctica. 
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The four unwarped images above 
show example 350 x 280 km airglow 
images taken on day 176 every 15 
minutes revealing both the high level 
of wave activity and quality of the 
images. Several wave features are 
highlighted as they propagate through 
the images. The blue and green lines 
can also be seen in keogram data 
below, wave event #1. 

In mid-winter there is continuous darkness at McMurdo. 
From June 23-26, 2012 (day 175-178) over 40 small-scale 
gravity wave events were analyzed during 73 continuous 
hours of observations. Their properties are shown in the 
figures below. 
Observed Wavelength Observed Phase Speed Observed Period 

Note the large spread 
and preferential 

direction of waves with 
higher phase speeds. 

The black line is a power 
spectrum of the 

keogram using a high-
pass (<60 min) filter and 
shows good agreement. 

A low-pass filter (>1 hr periods) of the large 
73 hour keogram revealing strong tidal 
features with characteristic periods as 
identified in the FFT analysis.   

280 km North to South 
 
 
350 km East to West 
 

Day 175 Day 176 Day 177 Day 178 

N-S Low-Pass Filtered 

FFT power spectrum analysis identifying 
mesospheric tidal signatures. Note the 
strong diurnal tide at 24 hours and several 
harmonics at 6, 8, and 12 hrs. 
 

T = 5.1, 8.4, 11.2, 16.4 min 

T = 6.1, 7.3, 9.7, 16.4 min 

Large-Scale Tidal Analysis 

¾ The sources of the wave events observed from McMurdo are probably associated 
with strong localized weather systems associated with the polar vortex. 

¾ Small-scale wave event analysis results are comparable using FFT and keograms. 

Future Work 
¾ Ongoing measurements from the South Pole station in combination with other 

ANGWIN sites will be used to investigate pan-Antarctic anisotropy and wave 
parameters. 

¾ New analysis of McMurdo data from 2013 and 2014 data will further clarify the 
asymmetries in the wave propagation at this site for understanding the climatology of 
gravity waves observed at McMurdo. 

¾ Comparison with onsite Fe Boltzmann Lidar measurements and MF radar wind 
measurements. 

Small-Scale Gravity Waves 
A high-pass filter was applied to the keogram 
to measure small-scale gravity waves  with 
periods of 5-60 min (as highlighted in yellow 
boxes). Two selected wave events are shown 
together with their FFT power spectrum. These 
are compared with the event properties 
analyzed from the individual airglow images. 

Distributions of Observed Wave Parameters 
A total of 419 events were analyzed. Their average values were λ= 22 km, v = 42 m/s,  
T = 12 min. These mean values and their ranges are typical for short-period gravity 
waves observed at several sites around Antarctica as part of ANGWIN. 

On August 2-18, 2012 (UT day 214-230) over 180 small-scale  
gravity wave events were observed. Their characteristics  
were similar to the full season results except their average  
phase speeds (50 m/s) were significantly higher. These wave events dominated the end of season results. 
The phase speed distribution is consistent with critical level wind-filtering [Nielson, et al, 2012] with 
much higher eastward phase speeds.   

Keograms 

(a) (b) 

(c) (d) 

Note the prevailing NE 
and SW wave motions, 
similar  to the winter 

summary plot. 
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λ = 21 𝑘𝑚 

Zonal Mean Wind: Eastward winds 
throughout the stratosphere (77°S) create 
a critical layer for eastward wave phase 
speeds less than ~30 m/s [MERRA]. Wave headings for 180 events on UT 

days 214-230.  

𝑣 = 39𝑚 𝑠  𝑇 = 15 𝑚𝑖𝑛 

Sketch illustrating direction of  
propagation from McMurdo 

Investigating mesospheric gravity wave dynamics over McMurdo Station, Antarctica (77° S) 

Introduction 
The Antarctic Gravity Wave Instrument Network (ANGWIN) is an NSF sponsored 
international program designed to develop and utilize a network of gravity wave 
observatories using existing and new instrumentation operated at several established 
research stations around the continent. Utah State University’s Atmospheric Imaging Lab 
operates all-sky infrared imagers at several research stations. Here we present novel 
measurements of short-period and larger-scale mesospheric gravity waves imaged 
during 2012 from McMurdo Station (77.8°S, 166.7°E) on Ross Island. This IR camera has 
operated at Arrival Heights alongside the University of Colorado Fe Lidar during the past 
three winter seasons (March-September 2012-2014). Two initial primary goals are: 
• Quantify the properties of small- and medium-scale mesospheric gravity wave 

climatology over this region of Antarctica. 
• Combine results with similar measurements from other ANGWIN stations to 

investigate continental-wide gravity wave dynamics (see SA31B-4100).  
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IR Imaging 

The data show evolution from NW propagation (107 events) 
in the fall which expands to NE and SW wave motions during 
mid-winter (110 events). The late winter was dominated by 
many waves (202 events) again exhibiting strong NE and SW 
motions but more isotropic than earlier. The strong 
asymmetries are suggestive of localized sources.     
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Optical site at Arrival Heights, 
McMurdo Station 

South Pole 

Halley 
Rothera 

McMurdo 

Distribution of Wave Headings:  
Winter season wave motions were 

prominent in several directions. 

Summary  
We have analyzed one year of data to date from McMurdo Station, Antarctica. The 
results are as follows: 

All-sky observations of the OH emission layer (~87 
km) were made using an infrared (0.9-1.7 µm) 
cooled InGaAs camera. The OH airglow emissions 
are much stronger in the infrared region (>1 µm), as 
shown in blue in the figure to the right, and we use 
new InGaAs cameras to obtain high-quality short-
exposure images of gravity waves under auroral and 
full moon observing conditions. 

¾ A large number (400+) of short-period gravity 
waves observed over McMurdo, Antarctica 
enabling the wintertime mesosphere wave 
climatology to be investigated for the first time. 

¾ McMurdo waves exhibits a large spread of phase 
speeds with a tendency for high phase speeds up 
to ~120 m/s. 

¾ New keogram analysis enables the investigation of 
larger period gravity waves and tidal perturbations 
in the mesosphere revealing 6, 8, 12, and 24 hr 
tides and harmonics. 
 

Two Awesome Weeks in August 

Example image processing from June 25, 
2012, 09:57 UT.  

Raw all-sky (180°) OH image data were recorded every 
10 s with a 3 s exposure enabling detailed 
measurements of individual gravity wave events.  
(a) Raw image oriented using the IR star field. 
(b) Stars removed 
(c) Flat fielded: Average nightly image subtracted. 
(d) Unwarped to 350 x 280 km geographic grid at 87 

km altitude. 
 

Gravity waves were analyzed using well-developed 
Fourier analysis techniques to determine direction of 
propagation (θ), horizontal wavelength (λ), observed 
horizontal phase speed (v) and wave period (T) [e.g. 
Taylor, et al, 1997]. 
 
During the 2012 observing period (March-September, 
nighttime hours) at McMurdo over 400 short-period 
(<1 hr) gravity wave events were observed.  

Both large- and small-scale gravity wave features can be studied  by creating keograms. A keogram is 
made by stacking vertical (and horizontal) slices through the center of each image together to form a 
time series revealing wave activity as a function of time. The large keograms along the bottom of the 
poster shows 73 continuous hours of wave data starting (day 175, 01:33 UT to day 178, 03:09 UT). 
These data illustrate the high quality of our gravity wave measurements from Antarctica. 

Wave Event #1: Day 176, 15:30-19:00  
λ  = 22 ± 3 km         θ = 217° ± 5° 
v = 44 ± 5 m/s       T = 8 ± 3 min 

0 10 20 30
0

1000

2000

3000

4000

5000

6000

7000

8000

P
ow

er

Period (min)

Wave Event #2: Day 177, 16:50-20:00  
λ  = 24 ± 3 km         θ = 318° ± 5° 
v  = 42 ± 5 m/s       T = 10 ± 3 min 

15:30 15:45 

16:15 16:00 

Summary: 2012 Wave Parameters 

N 

S 
E 

W 

The four unwarped images above 
show example 350 x 280 km airglow 
images taken on day 176 every 15 
minutes revealing both the high level 
of wave activity and quality of the 
images. Several wave features are 
highlighted as they propagate through 
the images. The blue and green lines 
can also be seen in keogram data 
below, wave event #1. 

In mid-winter there is continuous darkness at McMurdo. 
From June 23-26, 2012 (day 175-178) over 40 small-scale 
gravity wave events were analyzed during 73 continuous 
hours of observations. Their properties are shown in the 
figures below. 
Observed Wavelength Observed Phase Speed Observed Period 

Note the large spread 
and preferential 

direction of waves with 
higher phase speeds. 

The black line is a power 
spectrum of the 

keogram using a high-
pass (<60 min) filter and 
shows good agreement. 

A low-pass filter (>1 hr periods) of the large 
73 hour keogram revealing strong tidal 
features with characteristic periods as 
identified in the FFT analysis.   

280 km North to South 
 
 
350 km East to West 
 

Day 175 Day 176 Day 177 Day 178 

N-S Low-Pass Filtered 

FFT power spectrum analysis identifying 
mesospheric tidal signatures. Note the 
strong diurnal tide at 24 hours and several 
harmonics at 6, 8, and 12 hrs. 
 

T = 5.1, 8.4, 11.2, 16.4 min 

T = 6.1, 7.3, 9.7, 16.4 min 

Large-Scale Tidal Analysis 

¾ The sources of the wave events observed from McMurdo are probably associated 
with strong localized weather systems associated with the polar vortex. 

¾ Small-scale wave event analysis results are comparable using FFT and keograms. 

Future Work 
¾ Ongoing measurements from the South Pole station in combination with other 

ANGWIN sites will be used to investigate pan-Antarctic anisotropy and wave 
parameters. 

¾ New analysis of McMurdo data from 2013 and 2014 data will further clarify the 
asymmetries in the wave propagation at this site for understanding the climatology of 
gravity waves observed at McMurdo. 

¾ Comparison with onsite Fe Boltzmann Lidar measurements and MF radar wind 
measurements. 

Small-Scale Gravity Waves 
A high-pass filter was applied to the keogram 
to measure small-scale gravity waves  with 
periods of 5-60 min (as highlighted in yellow 
boxes). Two selected wave events are shown 
together with their FFT power spectrum. These 
are compared with the event properties 
analyzed from the individual airglow images. 

Distributions of Observed Wave Parameters 
A total of 419 events were analyzed. Their average values were λ= 22 km, v = 42 m/s,  
T = 12 min. These mean values and their ranges are typical for short-period gravity 
waves observed at several sites around Antarctica as part of ANGWIN. 

On August 2-18, 2012 (UT day 214-230) over 180 small-scale  
gravity wave events were observed. Their characteristics  
were similar to the full season results except their average  
phase speeds (50 m/s) were significantly higher. These wave events dominated the end of season results. 
The phase speed distribution is consistent with critical level wind-filtering [Nielson, et al, 2012] with 
much higher eastward phase speeds.   

Keograms 

(a) (b) 

(c) (d) 

Note the prevailing NE 
and SW wave motions, 
similar  to the winter 

summary plot. 
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λ = 21 𝑘𝑚 

Zonal Mean Wind: Eastward winds 
throughout the stratosphere (77°S) create 
a critical layer for eastward wave phase 
speeds less than ~30 m/s [MERRA]. Wave headings for 180 events on UT 

days 214-230.  

𝑣 = 39𝑚 𝑠  𝑇 = 15 𝑚𝑖𝑛 

Sketch illustrating direction of  
propagation from McMurdo 



Investigating mesospheric gravity wave dynamics over McMurdo Station, Antarctica (77° S) 

Introduction 
The Antarctic Gravity Wave Instrument Network (ANGWIN) is an NSF sponsored 
international program designed to develop and utilize a network of gravity wave 
observatories using existing and new instrumentation operated at several established 
research stations around the continent. Utah State University’s Atmospheric Imaging Lab 
operates all-sky infrared imagers at several research stations. Here we present novel 
measurements of short-period and larger-scale mesospheric gravity waves imaged 
during 2012 from McMurdo Station (77.8°S, 166.7°E) on Ross Island. This IR camera has 
operated at Arrival Heights alongside the University of Colorado Fe Lidar during the past 
three winter seasons (March-September 2012-2014). Two initial primary goals are: 
• Quantify the properties of small- and medium-scale mesospheric gravity wave 

climatology over this region of Antarctica. 
• Combine results with similar measurements from other ANGWIN stations to 

investigate continental-wide gravity wave dynamics (see SA31B-4100).  
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IR Imaging 

The data show evolution from NW propagation (107 events) 
in the fall which expands to NE and SW wave motions during 
mid-winter (110 events). The late winter was dominated by 
many waves (202 events) again exhibiting strong NE and SW 
motions but more isotropic than earlier. The strong 
asymmetries are suggestive of localized sources.     
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Three Continuous Days in June 

Optical site at Arrival Heights, 
McMurdo Station 
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Distribution of Wave Headings:  
Winter season wave motions were 

prominent in several directions. 

Summary  
We have analyzed one year of data to date from McMurdo Station, Antarctica. The 
results are as follows: 

All-sky observations of the OH emission layer (~87 
km) were made using an infrared (0.9-1.7 µm) 
cooled InGaAs camera. The OH airglow emissions 
are much stronger in the infrared region (>1 µm), as 
shown in blue in the figure to the right, and we use 
new InGaAs cameras to obtain high-quality short-
exposure images of gravity waves under auroral and 
full moon observing conditions. 

¾ A large number (400+) of short-period gravity 
waves observed over McMurdo, Antarctica 
enabling the wintertime mesosphere wave 
climatology to be investigated for the first time. 

¾ McMurdo waves exhibits a large spread of phase 
speeds with a tendency for high phase speeds up 
to ~120 m/s. 

¾ New keogram analysis enables the investigation of 
larger period gravity waves and tidal perturbations 
in the mesosphere revealing 6, 8, 12, and 24 hr 
tides and harmonics. 
 

Two Awesome Weeks in August 

Example image processing from June 25, 
2012, 09:57 UT.  

Raw all-sky (180°) OH image data were recorded every 
10 s with a 3 s exposure enabling detailed 
measurements of individual gravity wave events.  
(a) Raw image oriented using the IR star field. 
(b) Stars removed 
(c) Flat fielded: Average nightly image subtracted. 
(d) Unwarped to 350 x 280 km geographic grid at 87 

km altitude. 
 

Gravity waves were analyzed using well-developed 
Fourier analysis techniques to determine direction of 
propagation (θ), horizontal wavelength (λ), observed 
horizontal phase speed (v) and wave period (T) [e.g. 
Taylor, et al, 1997]. 
 
During the 2012 observing period (March-September, 
nighttime hours) at McMurdo over 400 short-period 
(<1 hr) gravity wave events were observed.  

Both large- and small-scale gravity wave features can be studied  by creating keograms. A keogram is 
made by stacking vertical (and horizontal) slices through the center of each image together to form a 
time series revealing wave activity as a function of time. The large keograms along the bottom of the 
poster shows 73 continuous hours of wave data starting (day 175, 01:33 UT to day 178, 03:09 UT). 
These data illustrate the high quality of our gravity wave measurements from Antarctica. 
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The four unwarped images above 
show example 350 x 280 km airglow 
images taken on day 176 every 15 
minutes revealing both the high level 
of wave activity and quality of the 
images. Several wave features are 
highlighted as they propagate through 
the images. The blue and green lines 
can also be seen in keogram data 
below, wave event #1. 

In mid-winter there is continuous darkness at McMurdo. 
From June 23-26, 2012 (day 175-178) over 40 small-scale 
gravity wave events were analyzed during 73 continuous 
hours of observations. Their properties are shown in the 
figures below. 
Observed Wavelength Observed Phase Speed Observed Period 

Note the large spread 
and preferential 

direction of waves with 
higher phase speeds. 

The black line is a power 
spectrum of the 

keogram using a high-
pass (<60 min) filter and 
shows good agreement. 

A low-pass filter (>1 hr periods) of the large 
73 hour keogram revealing strong tidal 
features with characteristic periods as 
identified in the FFT analysis.   
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N-S Low-Pass Filtered 

FFT power spectrum analysis identifying 
mesospheric tidal signatures. Note the 
strong diurnal tide at 24 hours and several 
harmonics at 6, 8, and 12 hrs. 
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Large-Scale Tidal Analysis 

¾ The sources of the wave events observed from McMurdo are probably associated 
with strong localized weather systems associated with the polar vortex. 

¾ Small-scale wave event analysis results are comparable using FFT and keograms. 

Future Work 
¾ Ongoing measurements from the South Pole station in combination with other 

ANGWIN sites will be used to investigate pan-Antarctic anisotropy and wave 
parameters. 

¾ New analysis of McMurdo data from 2013 and 2014 data will further clarify the 
asymmetries in the wave propagation at this site for understanding the climatology of 
gravity waves observed at McMurdo. 

¾ Comparison with onsite Fe Boltzmann Lidar measurements and MF radar wind 
measurements. 

Small-Scale Gravity Waves 
A high-pass filter was applied to the keogram 
to measure small-scale gravity waves  with 
periods of 5-60 min (as highlighted in yellow 
boxes). Two selected wave events are shown 
together with their FFT power spectrum. These 
are compared with the event properties 
analyzed from the individual airglow images. 

Distributions of Observed Wave Parameters 
A total of 419 events were analyzed. Their average values were λ= 22 km, v = 42 m/s,  
T = 12 min. These mean values and their ranges are typical for short-period gravity 
waves observed at several sites around Antarctica as part of ANGWIN. 

0

5

10

15
0

30

60

90

120

150
180

210

240

270

300

330

0

5

10

15

0

5

10

15
0

30

60

90

120

150

180

210

240

270

300

330

0

5

10

15

0

5

10

15
0

30

60

90

120

150

180

210

240

270

300

330

0

5

10

15

On August 2-18, 2012 (UT day 214-230) over 180 small-scale  
gravity wave events were observed. Their characteristics  
were similar to the full season results except their average  
phase speeds (50 m/s) were significantly higher. These wave events dominated the end of season results. 
The phase speed distribution is consistent with critical level wind-filtering [Nielson, et al, 2012] with 
much higher eastward phase speeds.   

Keograms 

(a) (b) 

(c) (d) 

Note the prevailing NE 
and SW wave motions, 
similar  to the winter 

summary plot. 
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Zonal Mean Wind: Eastward winds 
throughout the stratosphere (77°S) create 
a critical layer for eastward wave phase 
speeds less than ~30 m/s [MERRA]. Wave headings for 180 events on UT 

days 214-230.  
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Investigating mesospheric gravity wave dynamics over McMurdo Station, Antarctica (77° S) 

Introduction 
The Antarctic Gravity Wave Instrument Network (ANGWIN) is an NSF sponsored 
international program designed to develop and utilize a network of gravity wave 
observatories using existing and new instrumentation operated at several established 
research stations around the continent. Utah State University’s Atmospheric Imaging Lab 
operates all-sky infrared imagers at several research stations. Here we present novel 
measurements of short-period and larger-scale mesospheric gravity waves imaged 
during 2012 from McMurdo Station (77.8°S, 166.7°E) on Ross Island. This IR camera has 
operated at Arrival Heights alongside the University of Colorado Fe Lidar during the past 
three winter seasons (March-September 2012-2014). Two initial primary goals are: 
• Quantify the properties of small- and medium-scale mesospheric gravity wave 

climatology over this region of Antarctica. 
• Combine results with similar measurements from other ANGWIN stations to 

investigate continental-wide gravity wave dynamics (see SA31B-4100).  
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IR Imaging 

The data show evolution from NW propagation (107 events) 
in the fall which expands to NE and SW wave motions during 
mid-winter (110 events). The late winter was dominated by 
many waves (202 events) again exhibiting strong NE and SW 
motions but more isotropic than earlier. The strong 
asymmetries are suggestive of localized sources.     
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Three Continuous Days in June 

Optical site at Arrival Heights, 
McMurdo Station 

South Pole 

Halley 
Rothera 

McMurdo 

Distribution of Wave Headings:  
Winter season wave motions were 

prominent in several directions. 

Summary  
We have analyzed one year of data to date from McMurdo Station, Antarctica. The 
results are as follows: 

All-sky observations of the OH emission layer (~87 
km) were made using an infrared (0.9-1.7 µm) 
cooled InGaAs camera. The OH airglow emissions 
are much stronger in the infrared region (>1 µm), as 
shown in blue in the figure to the right, and we use 
new InGaAs cameras to obtain high-quality short-
exposure images of gravity waves under auroral and 
full moon observing conditions. 

¾ A large number (400+) of short-period gravity 
waves observed over McMurdo, Antarctica 
enabling the wintertime mesosphere wave 
climatology to be investigated for the first time. 

¾ McMurdo waves exhibits a large spread of phase 
speeds with a tendency for high phase speeds up 
to ~120 m/s. 

¾ New keogram analysis enables the investigation of 
larger period gravity waves and tidal perturbations 
in the mesosphere revealing 6, 8, 12, and 24 hr 
tides and harmonics. 
 

Two Awesome Weeks in August 

Example image processing from June 25, 
2012, 09:57 UT.  

Raw all-sky (180°) OH image data were recorded every 
10 s with a 3 s exposure enabling detailed 
measurements of individual gravity wave events.  
(a) Raw image oriented using the IR star field. 
(b) Stars removed 
(c) Flat fielded: Average nightly image subtracted. 
(d) Unwarped to 350 x 280 km geographic grid at 87 

km altitude. 
 

Gravity waves were analyzed using well-developed 
Fourier analysis techniques to determine direction of 
propagation (θ), horizontal wavelength (λ), observed 
horizontal phase speed (v) and wave period (T) [e.g. 
Taylor, et al, 1997]. 
 
During the 2012 observing period (March-September, 
nighttime hours) at McMurdo over 400 short-period 
(<1 hr) gravity wave events were observed.  

Both large- and small-scale gravity wave features can be studied  by creating keograms. A keogram is 
made by stacking vertical (and horizontal) slices through the center of each image together to form a 
time series revealing wave activity as a function of time. The large keograms along the bottom of the 
poster shows 73 continuous hours of wave data starting (day 175, 01:33 UT to day 178, 03:09 UT). 
These data illustrate the high quality of our gravity wave measurements from Antarctica. 

Wave Event #1: Day 176, 15:30-19:00  
λ  = 22 ± 3 km         θ = 217° ± 5° 
v = 44 ± 5 m/s       T = 8 ± 3 min 

Wave Event #2: Day 177, 16:50-20:00  
λ  = 24 ± 3 km         θ = 318° ± 5° 
v  = 42 ± 5 m/s       T = 10 ± 3 min 
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The four unwarped images above 
show example 350 x 280 km airglow 
images taken on day 176 every 15 
minutes revealing both the high level 
of wave activity and quality of the 
images. Several wave features are 
highlighted as they propagate through 
the images. The blue and green lines 
can also be seen in keogram data 
below, wave event #1. 

In mid-winter there is continuous darkness at McMurdo. 
From June 23-26, 2012 (day 175-178) over 40 small-scale 
gravity wave events were analyzed during 73 continuous 
hours of observations. Their properties are shown in the 
figures below. 
Observed Wavelength Observed Phase Speed Observed Period 

Note the large spread 
and preferential 

direction of waves with 
higher phase speeds. 

The black line is a power 
spectrum of the 

keogram using a high-
pass (<60 min) filter and 
shows good agreement. 

A low-pass filter (>1 hr periods) of the large 
73 hour keogram revealing strong tidal 
features with characteristic periods as 
identified in the FFT analysis.   
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N-S Low-Pass Filtered 

FFT power spectrum analysis identifying 
mesospheric tidal signatures. Note the 
strong diurnal tide at 24 hours and several 
harmonics at 6, 8, and 12 hrs. 
 

T = 5.1, 8.4, 11.2, 16.4 min 

T = 6.1, 7.3, 9.7, 16.4 min 

Large-Scale Tidal Analysis 

¾ The sources of the wave events observed from McMurdo are probably associated 
with strong localized weather systems associated with the polar vortex. 

¾ Small-scale wave event analysis results are comparable using FFT and keograms. 

Future Work 
¾ Ongoing measurements from the South Pole station in combination with other 

ANGWIN sites will be used to investigate pan-Antarctic anisotropy and wave 
parameters. 

¾ New analysis of McMurdo data from 2013 and 2014 data will further clarify the 
asymmetries in the wave propagation at this site for understanding the climatology of 
gravity waves observed at McMurdo. 

¾ Comparison with onsite Fe Boltzmann Lidar measurements and MF radar wind 
measurements. 

Small-Scale Gravity Waves 
A high-pass filter was applied to the keogram 
to measure small-scale gravity waves  with 
periods of 5-60 min (as highlighted in yellow 
boxes). Two selected wave events are shown 
together with their FFT power spectrum. These 
are compared with the event properties 
analyzed from the individual airglow images. 

Distributions of Observed Wave Parameters 
A total of 419 events were analyzed. Their average values were λ= 22 km, v = 42 m/s,  
T = 12 min. These mean values and their ranges are typical for short-period gravity 
waves observed at several sites around Antarctica as part of ANGWIN. 

On August 2-18, 2012 (UT day 214-230) over 180 small-scale  
gravity wave events were observed. Their characteristics  
were similar to the full season results except their average  
phase speeds (50 m/s) were significantly higher. These wave events dominated the end of season results. 
The phase speed distribution is consistent with critical level wind-filtering [Nielson, et al, 2012] with 
much higher eastward phase speeds.   
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Note the prevailing NE 
and SW wave motions, 
similar  to the winter 

summary plot. 
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Zonal Mean Wind: Eastward winds 
throughout the stratosphere (77°S) create 
a critical layer for eastward wave phase 
speeds less than ~30 m/s [MERRA]. Wave headings for 180 events on UT 

days 214-230.  
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Investigating mesospheric gravity wave dynamics over McMurdo Station, Antarctica (77° S) 

Introduction 
The Antarctic Gravity Wave Instrument Network (ANGWIN) is an NSF sponsored 
international program designed to develop and utilize a network of gravity wave 
observatories using existing and new instrumentation operated at several established 
research stations around the continent. Utah State University’s Atmospheric Imaging Lab 
operates all-sky infrared imagers at several research stations. Here we present novel 
measurements of short-period and larger-scale mesospheric gravity waves imaged 
during 2012 from McMurdo Station (77.8°S, 166.7°E) on Ross Island. This IR camera has 
operated at Arrival Heights alongside the University of Colorado Fe Lidar during the past 
three winter seasons (March-September 2012-2014). Two initial primary goals are: 
• Quantify the properties of small- and medium-scale mesospheric gravity wave 

climatology over this region of Antarctica. 
• Combine results with similar measurements from other ANGWIN stations to 

investigate continental-wide gravity wave dynamics (see SA31B-4100).  
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IR Imaging 

The data show evolution from NW propagation (107 events) 
in the fall which expands to NE and SW wave motions during 
mid-winter (110 events). The late winter was dominated by 
many waves (202 events) again exhibiting strong NE and SW 
motions but more isotropic than earlier. The strong 
asymmetries are suggestive of localized sources.     
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Three Continuous Days in June 

Optical site at Arrival Heights, 
McMurdo Station 

South Pole 

Halley 
Rothera 

McMurdo 

Distribution of Wave Headings:  
Winter season wave motions were 

prominent in several directions. 

Summary  
We have analyzed one year of data to date from McMurdo Station, Antarctica. The 
results are as follows: 

All-sky observations of the OH emission layer (~87 
km) were made using an infrared (0.9-1.7 µm) 
cooled InGaAs camera. The OH airglow emissions 
are much stronger in the infrared region (>1 µm), as 
shown in blue in the figure to the right, and we use 
new InGaAs cameras to obtain high-quality short-
exposure images of gravity waves under auroral and 
full moon observing conditions. 

¾ A large number (400+) of short-period gravity 
waves observed over McMurdo, Antarctica 
enabling the wintertime mesosphere wave 
climatology to be investigated for the first time. 

¾ McMurdo waves exhibits a large spread of phase 
speeds with a tendency for high phase speeds up 
to ~120 m/s. 

¾ New keogram analysis enables the investigation of 
larger period gravity waves and tidal perturbations 
in the mesosphere revealing 6, 8, 12, and 24 hr 
tides and harmonics. 
 

Two Awesome Weeks in August 

Example image processing from June 25, 
2012, 09:57 UT.  

Raw all-sky (180°) OH image data were recorded every 
10 s with a 3 s exposure enabling detailed 
measurements of individual gravity wave events.  
(a) Raw image oriented using the IR star field. 
(b) Stars removed 
(c) Flat fielded: Average nightly image subtracted. 
(d) Unwarped to 350 x 280 km geographic grid at 87 

km altitude. 
 

Gravity waves were analyzed using well-developed 
Fourier analysis techniques to determine direction of 
propagation (θ), horizontal wavelength (λ), observed 
horizontal phase speed (v) and wave period (T) [e.g. 
Taylor, et al, 1997]. 
 
During the 2012 observing period (March-September, 
nighttime hours) at McMurdo over 400 short-period 
(<1 hr) gravity wave events were observed.  

Both large- and small-scale gravity wave features can be studied  by creating keograms. A keogram is 
made by stacking vertical (and horizontal) slices through the center of each image together to form a 
time series revealing wave activity as a function of time. The large keograms along the bottom of the 
poster shows 73 continuous hours of wave data starting (day 175, 01:33 UT to day 178, 03:09 UT). 
These data illustrate the high quality of our gravity wave measurements from Antarctica. 
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The four unwarped images above 
show example 350 x 280 km airglow 
images taken on day 176 every 15 
minutes revealing both the high level 
of wave activity and quality of the 
images. Several wave features are 
highlighted as they propagate through 
the images. The blue and green lines 
can also be seen in keogram data 
below, wave event #1. 

In mid-winter there is continuous darkness at McMurdo. 
From June 23-26, 2012 (day 175-178) over 40 small-scale 
gravity wave events were analyzed during 73 continuous 
hours of observations. Their properties are shown in the 
figures below. 
Observed Wavelength Observed Phase Speed Observed Period 

Note the large spread 
and preferential 

direction of waves with 
higher phase speeds. 

The black line is a power 
spectrum of the 

keogram using a high-
pass (<60 min) filter and 
shows good agreement. 

A low-pass filter (>1 hr periods) of the large 
73 hour keogram revealing strong tidal 
features with characteristic periods as 
identified in the FFT analysis.   

280 km North to South 
 
 
350 km East to West 
 

Day 175 Day 176 Day 177 Day 178 

N-S Low-Pass Filtered 

FFT power spectrum analysis identifying 
mesospheric tidal signatures. Note the 
strong diurnal tide at 24 hours and several 
harmonics at 6, 8, and 12 hrs. 
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Large-Scale Tidal Analysis 

¾ The sources of the wave events observed from McMurdo are probably associated 
with strong localized weather systems associated with the polar vortex. 

¾ Small-scale wave event analysis results are comparable using FFT and keograms. 

Future Work 
¾ Ongoing measurements from the South Pole station in combination with other 

ANGWIN sites will be used to investigate pan-Antarctic anisotropy and wave 
parameters. 

¾ New analysis of McMurdo data from 2013 and 2014 data will further clarify the 
asymmetries in the wave propagation at this site for understanding the climatology of 
gravity waves observed at McMurdo. 

¾ Comparison with onsite Fe Boltzmann Lidar measurements and MF radar wind 
measurements. 

Small-Scale Gravity Waves 
A high-pass filter was applied to the keogram 
to measure small-scale gravity waves  with 
periods of 5-60 min (as highlighted in yellow 
boxes). Two selected wave events are shown 
together with their FFT power spectrum. These 
are compared with the event properties 
analyzed from the individual airglow images. 

Distributions of Observed Wave Parameters 
A total of 419 events were analyzed. Their average values were λ= 22 km, v = 42 m/s,  
T = 12 min. These mean values and their ranges are typical for short-period gravity 
waves observed at several sites around Antarctica as part of ANGWIN. 
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On August 2-18, 2012 (UT day 214-230) over 180 small-scale  
gravity wave events were observed. Their characteristics  
were similar to the full season results except their average  
phase speeds (50 m/s) were significantly higher. These wave events dominated the end of season results. 
The phase speed distribution is consistent with critical level wind-filtering [Nielson, et al, 2012] with 
much higher eastward phase speeds.   

Keograms 

(a) (b) 

(c) (d) 

Note the prevailing NE 
and SW wave motions, 
similar  to the winter 

summary plot. 

Fall (March-May) Winter (June-July) August-Sept 

λ = 21 𝑘𝑚 

Zonal Mean Wind: Eastward winds 
throughout the stratosphere (77°S) create 
a critical layer for eastward wave phase 
speeds less than ~30 m/s [MERRA]. Wave headings for 180 events on UT 

days 214-230.  

𝑣 = 39𝑚 𝑠  𝑇 = 15 𝑚𝑖𝑛 

Sketch illustrating direction of  
propagation from McMurdo 



Investigating mesospheric gravity wave dynamics over McMurdo Station, Antarctica (77° S) 

Introduction 
The Antarctic Gravity Wave Instrument Network (ANGWIN) is an NSF sponsored 
international program designed to develop and utilize a network of gravity wave 
observatories using existing and new instrumentation operated at several established 
research stations around the continent. Utah State University’s Atmospheric Imaging Lab 
operates all-sky infrared imagers at several research stations. Here we present novel 
measurements of short-period and larger-scale mesospheric gravity waves imaged 
during 2012 from McMurdo Station (77.8°S, 166.7°E) on Ross Island. This IR camera has 
operated at Arrival Heights alongside the University of Colorado Fe Lidar during the past 
three winter seasons (March-September 2012-2014). Two initial primary goals are: 
• Quantify the properties of small- and medium-scale mesospheric gravity wave 

climatology over this region of Antarctica. 
• Combine results with similar measurements from other ANGWIN stations to 

investigate continental-wide gravity wave dynamics (see SA31B-4100).  
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IR Imaging 

The data show evolution from NW propagation (107 events) 
in the fall which expands to NE and SW wave motions during 
mid-winter (110 events). The late winter was dominated by 
many waves (202 events) again exhibiting strong NE and SW 
motions but more isotropic than earlier. The strong 
asymmetries are suggestive of localized sources.     
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Three Continuous Days in June 

Optical site at Arrival Heights, 
McMurdo Station 
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Distribution of Wave Headings:  
Winter season wave motions were 

prominent in several directions. 

Summary  
We have analyzed one year of data to date from McMurdo Station, Antarctica. The 
results are as follows: 

All-sky observations of the OH emission layer (~87 
km) were made using an infrared (0.9-1.7 µm) 
cooled InGaAs camera. The OH airglow emissions 
are much stronger in the infrared region (>1 µm), as 
shown in blue in the figure to the right, and we use 
new InGaAs cameras to obtain high-quality short-
exposure images of gravity waves under auroral and 
full moon observing conditions. 

¾ A large number (400+) of short-period gravity 
waves observed over McMurdo, Antarctica 
enabling the wintertime mesosphere wave 
climatology to be investigated for the first time. 

¾ McMurdo waves exhibits a large spread of phase 
speeds with a tendency for high phase speeds up 
to ~120 m/s. 

¾ New keogram analysis enables the investigation of 
larger period gravity waves and tidal perturbations 
in the mesosphere revealing 6, 8, 12, and 24 hr 
tides and harmonics. 
 

Two Awesome Weeks in August 

Example image processing from June 25, 
2012, 09:57 UT.  

Raw all-sky (180°) OH image data were recorded every 
10 s with a 3 s exposure enabling detailed 
measurements of individual gravity wave events.  
(a) Raw image oriented using the IR star field. 
(b) Stars removed 
(c) Flat fielded: Average nightly image subtracted. 
(d) Unwarped to 350 x 280 km geographic grid at 87 

km altitude. 
 

Gravity waves were analyzed using well-developed 
Fourier analysis techniques to determine direction of 
propagation (θ), horizontal wavelength (λ), observed 
horizontal phase speed (v) and wave period (T) [e.g. 
Taylor, et al, 1997]. 
 
During the 2012 observing period (March-September, 
nighttime hours) at McMurdo over 400 short-period 
(<1 hr) gravity wave events were observed.  

Both large- and small-scale gravity wave features can be studied  by creating keograms. A keogram is 
made by stacking vertical (and horizontal) slices through the center of each image together to form a 
time series revealing wave activity as a function of time. The large keograms along the bottom of the 
poster shows 73 continuous hours of wave data starting (day 175, 01:33 UT to day 178, 03:09 UT). 
These data illustrate the high quality of our gravity wave measurements from Antarctica. 
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The four unwarped images above 
show example 350 x 280 km airglow 
images taken on day 176 every 15 
minutes revealing both the high level 
of wave activity and quality of the 
images. Several wave features are 
highlighted as they propagate through 
the images. The blue and green lines 
can also be seen in keogram data 
below, wave event #1. 

In mid-winter there is continuous darkness at McMurdo. 
From June 23-26, 2012 (day 175-178) over 40 small-scale 
gravity wave events were analyzed during 73 continuous 
hours of observations. Their properties are shown in the 
figures below. 
Observed Wavelength Observed Phase Speed Observed Period 

Note the large spread 
and preferential 

direction of waves with 
higher phase speeds. 

The black line is a power 
spectrum of the 

keogram using a high-
pass (<60 min) filter and 
shows good agreement. 

A low-pass filter (>1 hr periods) of the large 
73 hour keogram revealing strong tidal 
features with characteristic periods as 
identified in the FFT analysis.   
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N-S Low-Pass Filtered 

FFT power spectrum analysis identifying 
mesospheric tidal signatures. Note the 
strong diurnal tide at 24 hours and several 
harmonics at 6, 8, and 12 hrs. 
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Large-Scale Tidal Analysis 

¾ The sources of the wave events observed from McMurdo are probably associated 
with strong localized weather systems associated with the polar vortex. 

¾ Small-scale wave event analysis results are comparable using FFT and keograms. 

Future Work 
¾ Ongoing measurements from the South Pole station in combination with other 

ANGWIN sites will be used to investigate pan-Antarctic anisotropy and wave 
parameters. 

¾ New analysis of McMurdo data from 2013 and 2014 data will further clarify the 
asymmetries in the wave propagation at this site for understanding the climatology of 
gravity waves observed at McMurdo. 

¾ Comparison with onsite Fe Boltzmann Lidar measurements and MF radar wind 
measurements. 

Small-Scale Gravity Waves 
A high-pass filter was applied to the keogram 
to measure small-scale gravity waves  with 
periods of 5-60 min (as highlighted in yellow 
boxes). Two selected wave events are shown 
together with their FFT power spectrum. These 
are compared with the event properties 
analyzed from the individual airglow images. 

Distributions of Observed Wave Parameters 
A total of 419 events were analyzed. Their average values were λ= 22 km, v = 42 m/s,  
T = 12 min. These mean values and their ranges are typical for short-period gravity 
waves observed at several sites around Antarctica as part of ANGWIN. 
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On August 2-18, 2012 (UT day 214-230) over 180 small-scale  
gravity wave events were observed. Their characteristics  
were similar to the full season results except their average  
phase speeds (50 m/s) were significantly higher. These wave events dominated the end of season results. 
The phase speed distribution is consistent with critical level wind-filtering [Nielson, et al, 2012] with 
much higher eastward phase speeds.   

Keograms 

(a) (b) 

(c) (d) 

Note the prevailing NE 
and SW wave motions, 
similar  to the winter 

summary plot. 

Fall (March-May) Winter (June-July) August-Sept 

λ = 21 𝑘𝑚 

Zonal Mean Wind: Eastward winds 
throughout the stratosphere (77°S) create 
a critical layer for eastward wave phase 
speeds less than ~30 m/s [MERRA]. Wave headings for 180 events on UT 

days 214-230.  

𝑣 = 39𝑚 𝑠  𝑇 = 15 𝑚𝑖𝑛 

Sketch illustrating direction of  
propagation from McMurdo 

Investigating mesospheric gravity wave dynamics over McMurdo Station, Antarctica (77° S) 

Introduction 
The Antarctic Gravity Wave Instrument Network (ANGWIN) is an NSF sponsored 
international program designed to develop and utilize a network of gravity wave 
observatories using existing and new instrumentation operated at several established 
research stations around the continent. Utah State University’s Atmospheric Imaging Lab 
operates all-sky infrared imagers at several research stations. Here we present novel 
measurements of short-period and larger-scale mesospheric gravity waves imaged 
during 2012 from McMurdo Station (77.8°S, 166.7°E) on Ross Island. This IR camera has 
operated at Arrival Heights alongside the University of Colorado Fe Lidar during the past 
three winter seasons (March-September 2012-2014). Two initial primary goals are: 
• Quantify the properties of small- and medium-scale mesospheric gravity wave 

climatology over this region of Antarctica. 
• Combine results with similar measurements from other ANGWIN stations to 

investigate continental-wide gravity wave dynamics (see SA31B-4100).  
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IR Imaging 

The data show evolution from NW propagation (107 events) 
in the fall which expands to NE and SW wave motions during 
mid-winter (110 events). The late winter was dominated by 
many waves (202 events) again exhibiting strong NE and SW 
motions but more isotropic than earlier. The strong 
asymmetries are suggestive of localized sources.     
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Three Continuous Days in June 

Optical site at Arrival Heights, 
McMurdo Station 

South Pole 

Halley 
Rothera 

McMurdo 

Distribution of Wave Headings:  
Winter season wave motions were 

prominent in several directions. 

Summary  
We have analyzed one year of data to date from McMurdo Station, Antarctica. The 
results are as follows: 

All-sky observations of the OH emission layer (~87 
km) were made using an infrared (0.9-1.7 µm) 
cooled InGaAs camera. The OH airglow emissions 
are much stronger in the infrared region (>1 µm), as 
shown in blue in the figure to the right, and we use 
new InGaAs cameras to obtain high-quality short-
exposure images of gravity waves under auroral and 
full moon observing conditions. 

¾ A large number (400+) of short-period gravity 
waves observed over McMurdo, Antarctica 
enabling the wintertime mesosphere wave 
climatology to be investigated for the first time. 

¾ McMurdo waves exhibits a large spread of phase 
speeds with a tendency for high phase speeds up 
to ~120 m/s. 

¾ New keogram analysis enables the investigation of 
larger period gravity waves and tidal perturbations 
in the mesosphere revealing 6, 8, 12, and 24 hr 
tides and harmonics. 
 

Two Awesome Weeks in August 

Example image processing from June 25, 
2012, 09:57 UT.  

Raw all-sky (180°) OH image data were recorded every 
10 s with a 3 s exposure enabling detailed 
measurements of individual gravity wave events.  
(a) Raw image oriented using the IR star field. 
(b) Stars removed 
(c) Flat fielded: Average nightly image subtracted. 
(d) Unwarped to 350 x 280 km geographic grid at 87 

km altitude. 
 

Gravity waves were analyzed using well-developed 
Fourier analysis techniques to determine direction of 
propagation (θ), horizontal wavelength (λ), observed 
horizontal phase speed (v) and wave period (T) [e.g. 
Taylor, et al, 1997]. 
 
During the 2012 observing period (March-September, 
nighttime hours) at McMurdo over 400 short-period 
(<1 hr) gravity wave events were observed.  

Both large- and small-scale gravity wave features can be studied  by creating keograms. A keogram is 
made by stacking vertical (and horizontal) slices through the center of each image together to form a 
time series revealing wave activity as a function of time. The large keograms along the bottom of the 
poster shows 73 continuous hours of wave data starting (day 175, 01:33 UT to day 178, 03:09 UT). 
These data illustrate the high quality of our gravity wave measurements from Antarctica. 
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The four unwarped images above 
show example 350 x 280 km airglow 
images taken on day 176 every 15 
minutes revealing both the high level 
of wave activity and quality of the 
images. Several wave features are 
highlighted as they propagate through 
the images. The blue and green lines 
can also be seen in keogram data 
below, wave event #1. 

In mid-winter there is continuous darkness at McMurdo. 
From June 23-26, 2012 (day 175-178) over 40 small-scale 
gravity wave events were analyzed during 73 continuous 
hours of observations. Their properties are shown in the 
figures below. 
Observed Wavelength Observed Phase Speed Observed Period 

Note the large spread 
and preferential 

direction of waves with 
higher phase speeds. 

The black line is a power 
spectrum of the 

keogram using a high-
pass (<60 min) filter and 
shows good agreement. 

A low-pass filter (>1 hr periods) of the large 
73 hour keogram revealing strong tidal 
features with characteristic periods as 
identified in the FFT analysis.   
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350 km East to West 
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N-S Low-Pass Filtered 

FFT power spectrum analysis identifying 
mesospheric tidal signatures. Note the 
strong diurnal tide at 24 hours and several 
harmonics at 6, 8, and 12 hrs. 
 

T = 5.1, 8.4, 11.2, 16.4 min 

T = 6.1, 7.3, 9.7, 16.4 min 

Large-Scale Tidal Analysis 

¾ The sources of the wave events observed from McMurdo are probably associated 
with strong localized weather systems associated with the polar vortex. 

¾ Small-scale wave event analysis results are comparable using FFT and keograms. 

Future Work 
¾ Ongoing measurements from the South Pole station in combination with other 

ANGWIN sites will be used to investigate pan-Antarctic anisotropy and wave 
parameters. 

¾ New analysis of McMurdo data from 2013 and 2014 data will further clarify the 
asymmetries in the wave propagation at this site for understanding the climatology of 
gravity waves observed at McMurdo. 

¾ Comparison with onsite Fe Boltzmann Lidar measurements and MF radar wind 
measurements. 

Small-Scale Gravity Waves 
A high-pass filter was applied to the keogram 
to measure small-scale gravity waves  with 
periods of 5-60 min (as highlighted in yellow 
boxes). Two selected wave events are shown 
together with their FFT power spectrum. These 
are compared with the event properties 
analyzed from the individual airglow images. 

Distributions of Observed Wave Parameters 
A total of 419 events were analyzed. Their average values were λ= 22 km, v = 42 m/s,  
T = 12 min. These mean values and their ranges are typical for short-period gravity 
waves observed at several sites around Antarctica as part of ANGWIN. 

On August 2-18, 2012 (UT day 214-230) over 180 small-scale  
gravity wave events were observed. Their characteristics  
were similar to the full season results except their average  
phase speeds (50 m/s) were significantly higher. These wave events dominated the end of season results. 
The phase speed distribution is consistent with critical level wind-filtering [Nielson, et al, 2012] with 
much higher eastward phase speeds.   

Keograms 
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(c) (d) 

Note the prevailing NE 
and SW wave motions, 
similar  to the winter 

summary plot. 
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λ = 21 𝑘𝑚 

Zonal Mean Wind: Eastward winds 
throughout the stratosphere (77°S) create 
a critical layer for eastward wave phase 
speeds less than ~30 m/s [MERRA]. Wave headings for 180 events on UT 

days 214-230.  

𝑣 = 39𝑚 𝑠  𝑇 = 15 𝑚𝑖𝑛 

Sketch illustrating direction of  
propagation from McMurdo 

Investigating mesospheric gravity wave dynamics over McMurdo Station, Antarctica (77° S) 

Introduction 
The Antarctic Gravity Wave Instrument Network (ANGWIN) is an NSF sponsored 
international program designed to develop and utilize a network of gravity wave 
observatories using existing and new instrumentation operated at several established 
research stations around the continent. Utah State University’s Atmospheric Imaging Lab 
operates all-sky infrared imagers at several research stations. Here we present novel 
measurements of short-period and larger-scale mesospheric gravity waves imaged 
during 2012 from McMurdo Station (77.8°S, 166.7°E) on Ross Island. This IR camera has 
operated at Arrival Heights alongside the University of Colorado Fe Lidar during the past 
three winter seasons (March-September 2012-2014). Two initial primary goals are: 
• Quantify the properties of small- and medium-scale mesospheric gravity wave 

climatology over this region of Antarctica. 
• Combine results with similar measurements from other ANGWIN stations to 

investigate continental-wide gravity wave dynamics (see SA31B-4100).  
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IR Imaging 

The data show evolution from NW propagation (107 events) 
in the fall which expands to NE and SW wave motions during 
mid-winter (110 events). The late winter was dominated by 
many waves (202 events) again exhibiting strong NE and SW 
motions but more isotropic than earlier. The strong 
asymmetries are suggestive of localized sources.     
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Optical site at Arrival Heights, 
McMurdo Station 
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Distribution of Wave Headings:  
Winter season wave motions were 

prominent in several directions. 

Summary  
We have analyzed one year of data to date from McMurdo Station, Antarctica. The 
results are as follows: 

All-sky observations of the OH emission layer (~87 
km) were made using an infrared (0.9-1.7 µm) 
cooled InGaAs camera. The OH airglow emissions 
are much stronger in the infrared region (>1 µm), as 
shown in blue in the figure to the right, and we use 
new InGaAs cameras to obtain high-quality short-
exposure images of gravity waves under auroral and 
full moon observing conditions. 

¾ A large number (400+) of short-period gravity 
waves observed over McMurdo, Antarctica 
enabling the wintertime mesosphere wave 
climatology to be investigated for the first time. 

¾ McMurdo waves exhibits a large spread of phase 
speeds with a tendency for high phase speeds up 
to ~120 m/s. 

¾ New keogram analysis enables the investigation of 
larger period gravity waves and tidal perturbations 
in the mesosphere revealing 6, 8, 12, and 24 hr 
tides and harmonics. 
 

Two Awesome Weeks in August 

Example image processing from June 25, 
2012, 09:57 UT.  

Raw all-sky (180°) OH image data were recorded every 
10 s with a 3 s exposure enabling detailed 
measurements of individual gravity wave events.  
(a) Raw image oriented using the IR star field. 
(b) Stars removed 
(c) Flat fielded: Average nightly image subtracted. 
(d) Unwarped to 350 x 280 km geographic grid at 87 

km altitude. 
 

Gravity waves were analyzed using well-developed 
Fourier analysis techniques to determine direction of 
propagation (θ), horizontal wavelength (λ), observed 
horizontal phase speed (v) and wave period (T) [e.g. 
Taylor, et al, 1997]. 
 
During the 2012 observing period (March-September, 
nighttime hours) at McMurdo over 400 short-period 
(<1 hr) gravity wave events were observed.  

Both large- and small-scale gravity wave features can be studied  by creating keograms. A keogram is 
made by stacking vertical (and horizontal) slices through the center of each image together to form a 
time series revealing wave activity as a function of time. The large keograms along the bottom of the 
poster shows 73 continuous hours of wave data starting (day 175, 01:33 UT to day 178, 03:09 UT). 
These data illustrate the high quality of our gravity wave measurements from Antarctica. 
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The four unwarped images above 
show example 350 x 280 km airglow 
images taken on day 176 every 15 
minutes revealing both the high level 
of wave activity and quality of the 
images. Several wave features are 
highlighted as they propagate through 
the images. The blue and green lines 
can also be seen in keogram data 
below, wave event #1. 

In mid-winter there is continuous darkness at McMurdo. 
From June 23-26, 2012 (day 175-178) over 40 small-scale 
gravity wave events were analyzed during 73 continuous 
hours of observations. Their properties are shown in the 
figures below. 
Observed Wavelength Observed Phase Speed Observed Period 

Note the large spread 
and preferential 

direction of waves with 
higher phase speeds. 

The black line is a power 
spectrum of the 

keogram using a high-
pass (<60 min) filter and 
shows good agreement. 

A low-pass filter (>1 hr periods) of the large 
73 hour keogram revealing strong tidal 
features with characteristic periods as 
identified in the FFT analysis.   
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N-S Low-Pass Filtered 

FFT power spectrum analysis identifying 
mesospheric tidal signatures. Note the 
strong diurnal tide at 24 hours and several 
harmonics at 6, 8, and 12 hrs. 
 

T = 5.1, 8.4, 11.2, 16.4 min 

T = 6.1, 7.3, 9.7, 16.4 min 

Large-Scale Tidal Analysis 

¾ The sources of the wave events observed from McMurdo are probably associated 
with strong localized weather systems associated with the polar vortex. 

¾ Small-scale wave event analysis results are comparable using FFT and keograms. 

Future Work 
¾ Ongoing measurements from the South Pole station in combination with other 

ANGWIN sites will be used to investigate pan-Antarctic anisotropy and wave 
parameters. 

¾ New analysis of McMurdo data from 2013 and 2014 data will further clarify the 
asymmetries in the wave propagation at this site for understanding the climatology of 
gravity waves observed at McMurdo. 

¾ Comparison with onsite Fe Boltzmann Lidar measurements and MF radar wind 
measurements. 

Small-Scale Gravity Waves 
A high-pass filter was applied to the keogram 
to measure small-scale gravity waves  with 
periods of 5-60 min (as highlighted in yellow 
boxes). Two selected wave events are shown 
together with their FFT power spectrum. These 
are compared with the event properties 
analyzed from the individual airglow images. 

Distributions of Observed Wave Parameters 
A total of 419 events were analyzed. Their average values were λ= 22 km, v = 42 m/s,  
T = 12 min. These mean values and their ranges are typical for short-period gravity 
waves observed at several sites around Antarctica as part of ANGWIN. 

On August 2-18, 2012 (UT day 214-230) over 180 small-scale  
gravity wave events were observed. Their characteristics  
were similar to the full season results except their average  
phase speeds (50 m/s) were significantly higher. These wave events dominated the end of season results. 
The phase speed distribution is consistent with critical level wind-filtering [Nielson, et al, 2012] with 
much higher eastward phase speeds.   

Keograms 

(a) (b) 

(c) (d) 

Note the prevailing NE 
and SW wave motions, 
similar  to the winter 

summary plot. 
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Zonal Mean Wind: Eastward winds 
throughout the stratosphere (77°S) create 
a critical layer for eastward wave phase 
speeds less than ~30 m/s [MERRA]. Wave headings for 180 events on UT 

days 214-230.  

𝑣 = 39𝑚 𝑠  𝑇 = 15 𝑚𝑖𝑛 
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Investigating mesospheric gravity wave dynamics over McMurdo Station, Antarctica (77° S) 

Introduction 
The Antarctic Gravity Wave Instrument Network (ANGWIN) is an NSF sponsored 
international program designed to develop and utilize a network of gravity wave 
observatories using existing and new instrumentation operated at several established 
research stations around the continent. Utah State University’s Atmospheric Imaging Lab 
operates all-sky infrared imagers at several research stations. Here we present novel 
measurements of short-period and larger-scale mesospheric gravity waves imaged 
during 2012 from McMurdo Station (77.8°S, 166.7°E) on Ross Island. This IR camera has 
operated at Arrival Heights alongside the University of Colorado Fe Lidar during the past 
three winter seasons (March-September 2012-2014). Two initial primary goals are: 
• Quantify the properties of small- and medium-scale mesospheric gravity wave 

climatology over this region of Antarctica. 
• Combine results with similar measurements from other ANGWIN stations to 

investigate continental-wide gravity wave dynamics (see SA31B-4100).  
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IR Imaging 

The data show evolution from NW propagation (107 events) 
in the fall which expands to NE and SW wave motions during 
mid-winter (110 events). The late winter was dominated by 
many waves (202 events) again exhibiting strong NE and SW 
motions but more isotropic than earlier. The strong 
asymmetries are suggestive of localized sources.     
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Distribution of Wave Headings:  
Winter season wave motions were 
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Summary  
We have analyzed one year of data to date from McMurdo Station, Antarctica. The 
results are as follows: 

All-sky observations of the OH emission layer (~87 
km) were made using an infrared (0.9-1.7 µm) 
cooled InGaAs camera. The OH airglow emissions 
are much stronger in the infrared region (>1 µm), as 
shown in blue in the figure to the right, and we use 
new InGaAs cameras to obtain high-quality short-
exposure images of gravity waves under auroral and 
full moon observing conditions. 

¾ A large number (400+) of short-period gravity 
waves observed over McMurdo, Antarctica 
enabling the wintertime mesosphere wave 
climatology to be investigated for the first time. 

¾ McMurdo waves exhibits a large spread of phase 
speeds with a tendency for high phase speeds up 
to ~120 m/s. 

¾ New keogram analysis enables the investigation of 
larger period gravity waves and tidal perturbations 
in the mesosphere revealing 6, 8, 12, and 24 hr 
tides and harmonics. 
 

Two Awesome Weeks in August 

Example image processing from June 25, 
2012, 09:57 UT.  

Raw all-sky (180°) OH image data were recorded every 
10 s with a 3 s exposure enabling detailed 
measurements of individual gravity wave events.  
(a) Raw image oriented using the IR star field. 
(b) Stars removed 
(c) Flat fielded: Average nightly image subtracted. 
(d) Unwarped to 350 x 280 km geographic grid at 87 

km altitude. 
 

Gravity waves were analyzed using well-developed 
Fourier analysis techniques to determine direction of 
propagation (θ), horizontal wavelength (λ), observed 
horizontal phase speed (v) and wave period (T) [e.g. 
Taylor, et al, 1997]. 
 
During the 2012 observing period (March-September, 
nighttime hours) at McMurdo over 400 short-period 
(<1 hr) gravity wave events were observed.  

Both large- and small-scale gravity wave features can be studied  by creating keograms. A keogram is 
made by stacking vertical (and horizontal) slices through the center of each image together to form a 
time series revealing wave activity as a function of time. The large keograms along the bottom of the 
poster shows 73 continuous hours of wave data starting (day 175, 01:33 UT to day 178, 03:09 UT). 
These data illustrate the high quality of our gravity wave measurements from Antarctica. 

Wave Event #1: Day 176, 15:30-19:00  
λ  = 22 ± 3 km         θ = 217° ± 5° 
v = 44 ± 5 m/s       T = 8 ± 3 min 
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Wave Event #2: Day 177, 16:50-20:00  
λ  = 24 ± 3 km         θ = 318° ± 5° 
v  = 42 ± 5 m/s       T = 10 ± 3 min 
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The four unwarped images above 
show example 350 x 280 km airglow 
images taken on day 176 every 15 
minutes revealing both the high level 
of wave activity and quality of the 
images. Several wave features are 
highlighted as they propagate through 
the images. The blue and green lines 
can also be seen in keogram data 
below, wave event #1. 

In mid-winter there is continuous darkness at McMurdo. 
From June 23-26, 2012 (day 175-178) over 40 small-scale 
gravity wave events were analyzed during 73 continuous 
hours of observations. Their properties are shown in the 
figures below. 
Observed Wavelength Observed Phase Speed Observed Period 

Note the large spread 
and preferential 

direction of waves with 
higher phase speeds. 

The black line is a power 
spectrum of the 

keogram using a high-
pass (<60 min) filter and 
shows good agreement. 

A low-pass filter (>1 hr periods) of the large 
73 hour keogram revealing strong tidal 
features with characteristic periods as 
identified in the FFT analysis.   

280 km North to South 
 
 
350 km East to West 
 

Day 175 Day 176 Day 177 Day 178 

N-S Low-Pass Filtered 

FFT power spectrum analysis identifying 
mesospheric tidal signatures. Note the 
strong diurnal tide at 24 hours and several 
harmonics at 6, 8, and 12 hrs. 
 

T = 5.1, 8.4, 11.2, 16.4 min 

T = 6.1, 7.3, 9.7, 16.4 min 

Large-Scale Tidal Analysis 

¾ The sources of the wave events observed from McMurdo are probably associated 
with strong localized weather systems associated with the polar vortex. 

¾ Small-scale wave event analysis results are comparable using FFT and keograms. 

Future Work 
¾ Ongoing measurements from the South Pole station in combination with other 

ANGWIN sites will be used to investigate pan-Antarctic anisotropy and wave 
parameters. 

¾ New analysis of McMurdo data from 2013 and 2014 data will further clarify the 
asymmetries in the wave propagation at this site for understanding the climatology of 
gravity waves observed at McMurdo. 

¾ Comparison with onsite Fe Boltzmann Lidar measurements and MF radar wind 
measurements. 

Small-Scale Gravity Waves 
A high-pass filter was applied to the keogram 
to measure small-scale gravity waves  with 
periods of 5-60 min (as highlighted in yellow 
boxes). Two selected wave events are shown 
together with their FFT power spectrum. These 
are compared with the event properties 
analyzed from the individual airglow images. 

Distributions of Observed Wave Parameters 
A total of 419 events were analyzed. Their average values were λ= 22 km, v = 42 m/s,  
T = 12 min. These mean values and their ranges are typical for short-period gravity 
waves observed at several sites around Antarctica as part of ANGWIN. 

On August 2-18, 2012 (UT day 214-230) over 180 small-scale  
gravity wave events were observed. Their characteristics  
were similar to the full season results except their average  
phase speeds (50 m/s) were significantly higher. These wave events dominated the end of season results. 
The phase speed distribution is consistent with critical level wind-filtering [Nielson, et al, 2012] with 
much higher eastward phase speeds.   

Keograms 

(a) (b) 

(c) (d) 

Note the prevailing NE 
and SW wave motions, 
similar  to the winter 

summary plot. 

Fall (March-May) Winter (June-July) August-Sept 

λ = 21 𝑘𝑚 

Zonal Mean Wind: Eastward winds 
throughout the stratosphere (77°S) create 
a critical layer for eastward wave phase 
speeds less than ~30 m/s [MERRA]. Wave headings for 180 events on UT 

days 214-230.  

𝑣 = 39𝑚 𝑠  𝑇 = 15 𝑚𝑖𝑛 

Sketch illustrating direction of  
propagation from McMurdo 
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